
D.H.-L. Goh et al. (Eds.): ICADL 2007, LNCS 4822, pp. 109–11 , 2007.
© Springer-Verlag Berlin Heidelberg 2007

Development of Prototype Morphological Analyzer for
he South Indian Language of Kannada

T.N. Vikram and Shalini R. Urs

International School of Information Management, University of Mysore, Manasagangotri,
Mysore-570006, Karnataka, India

{shalini,vikram}@isim.ac.in

Abstract. A prototype morphological analyzer for the south Indian language of
Kannada is presented in this work. The analyzer is based on Finite state
machines and can handle 500 distinct Noun and Verb stems of Kannada. The
morphological analyzer can simultaneously serve as a stemmer, part of speech
tagger and spell checker and hence it becomes a very efficient tool for content
management.

Keywords: Kannada Morphology, Finite State Machine, Kannada Content
Management, Natural Language Processing.

1 Introduction

The onset of localization of the content has capacitated the penetration of internet into
those regions which do not speak English, particularly Asia. People can read and post
things in their own native languages now. However, the current capabilities of the
localized edition of internet is very limited. Key word based searching for the local
languages is yet to be developed. Text categorization, summarization and retrieval has
not been achieved in most of the Asian languages due to the lack of the essential
stemming algorithms which are language specific. Similarly automatic translation of
the pages to English or any other language is facilitated only if there is an efficient
Part of Speech tagger(POS) [22]. As in the case of a stemming algorithm, most of the
Asian languages also lack POS taggers for their respective languages. This can be
addressed by developing a morph analyzer for that given language. A morph analyzer
outputs the stem, the POS tag and affix for any given word. As a result the morph
analyzer can be used for both stemming and part of speech tagging simultaneously.

In view of this, we have attempted to develop a prototype Kannada Morph Analyzer.
Kannada is the official language of the south Indian state of Karnataka, with about 44
million speakers. Though a language of rich literary history, it is resource poor when
viewed through the prism of computational linguistics. There are hardly any attempts apart
from the work of Sahoo and Vidyasagar [5] where a Kannada WordNet is attempted and a
Kannada Indexing software prototype by Settar [6]. Both of them are highly constrained
by the lack of a morphology analyzer. Unlike English where most the morphotactic
changes do not bring about change in spellings, Kannada words change spellings when the
stems are inflected, which adds to the complexity of developing the morph analyzer. The
analyzer is based on Finite state machines and can handle 500 distinct Noun and Verb

6

t

1 T.N. Vikram and S.R. Urs

stems of Kannada. The morphological analyzer can simultaneously serve as a stemmer,
part of speech tagger and spell checker simultaneously, and hence it becomes a very
efficient tool for content management.

The paper is organized as follows. In Section 2 we briefly describe the state of the
art in morphology analysis of various languages. Language specific morphology for
Kannada is explained is Section 3. In Section 4 we explain the development of the
proposed morph analyzer for Kannada. Finally we conclude this work with some
discussion in Section 5.

2 The Current State of the Art in Morphological Analysis

The morphological analysis for English is far more advanced than any other contemporary
languages [1]. Some recent advances in stemming for Germainc and other European
languages can be found in Braschler and Ripplinger [7]. A comparative analysis of the
various stemming algorithms for nine European Languages is presented in the survey
report by Tomlinson [8]. A few stemmers for Asian languages are also proposed in the
literature. Lee [9] has proposed a lexical analyzer and stemmer for Korean. It is
implemented using finite state machine. A Chinese-English cross language information
retrieval based on Chinese stemming is proposed in Min et al [10]. But stemming does
not play a very crucial role in Chinese and Japanese because noun phrases never
undergo morphotactic changes [2]. A few attempts for Malay language morph analysis
is also seen [3].

Relatively little literature is available for Indic languages. An unsupervised morphology
learner for Assamese language is proposed by Sharma et al. [11]. An automatic spell
check for Assamese is proposed by Das et al. [12]. A Morph analyzer for Oriya has
been proposed in Mohanty et al. [13], which works on the paradigm of finite state
machines. A few prototype morph analyzers for Tamil, Bangla, Oriya, Assamese and
Manipuri has been attempted [14].

The future of any content management activities in Kannada relies on the language
technologies like spell checker development, POS tagger and stemmer. A morph
analyzer serves as a spell checker, POS tagger and stem identifier simultaneously and
hence this works assumes importance. To the best of our knowledge there is no research
literature available with regard to the development of a morphology analyzer in
Kannada, and hence this work assumes importance. Kannada has 38 basic character.
Also 330 conjuncts are formed due to combination of vowels and consonants. Kannada
has 100,000 basic stems and more than a million morphed variants formed due to more
than 5000 distinct character variants. We report here the development of a finite state
Kannada morphology for Nouns and Verbs. It has been implemented on the AT & T
FSM Toolkit [17]. The nuances of verb and noun morphology of Kannada are explained
in the section to follow.

3 Kannada Morphology

In Kannada, the derivation of words is either by combining two distinct words or by
affixes. During the combination of two words spelling changes might occur. Eg:
mugilu (Sky) + eVttara (High)= mugileVttara (Sky High). Word combination occurs

10

 Development of Prototype Morphological Analyzer 1

in two ways in Kannada, namely Sandhi and Samasa[15]. However we do not handle
compound formation morphology in this work. The other method in which word
formation happens is through affixes.

Kannada inherits many of the affixes from Sanskrit. Most of the Kannada affixes
are inflectional suffixes called vibhakatis[15]. Spelling changes occur in a large
number of cases with the application of suffixes. Kannada inherits 20 prefixes
(upasargas) from Sanskrit. Prefixes in many cases change the meaning of the words
in a way that the derived words may be a treated as root words themselves.

3.1 Nouns

Nouns represents the gender, rationality, case and number in Kannada. The nouns
ending with –anu and –aLu are identified as masculine and feminine respectively.
Kannada nouns in their singular for do not have any markers attached to them. –gaLu, –
a, –aru are generally considered as the plural markers. Eg: The root bAlaka (Boy) is
pluralized as bAlakaru (Boys), maneV (House) is pluralized as maneVgaLu (Houses).

Similar case marking exists in Kannada as in other Dravidian languages. The case
markers for the corresponding cases is given in Table 1. However they cannot be merely
concatenated to the roots.

Table 1. Case markers for nouns [18]

Case Marker

Nominative -0(u,nu,lu,ru)
Accusative -annu, -vanna,
Genetive -a
Dative -ge, -ige, -akke, -kke
Locative -alli, -yalli,
Instrumental/Ablative -inda, YiMda
Vocative -ee / vowel length

Table 2. Inflected noun and its meaning when different markers are concatenated

Inflected Nouns Meaning in English Type of Inflection made on
the Noun by markers

hani Drop -
hani-gaLu Drops Plural
hani-yiMda From the Drop Singular + Ablative
hani-geV To the Drop Singular + Dative
hani-ya Of the Drop Singular + Genitive
hani-yalli In the Drop Singular + Locative
hani-yannu The Drop Singular + Accusative
hani-galYiMda Because of Drops Plural + Ablative
hani-galYigeV To the Drops Plural + Dative
hani-galYa Of the Drops Plural + Genitive
hani-galYalli In the Drops Plural + Locative
hani-galYannu The Drops Plural + Accusative

11

1 T.N. Vikram and S.R. Urs

Nouns that terminate with vowels like (eV, i, u, A) are appended with an a, preceded
by morphophonomically inserted y or eV. These case markers are strictly for singular
cases. For plural cases the markers themselves undergo certain morphotactic changes.
An example is considered in Table 2, which illustrates the inflection of the noun
hani(Drop), with singular and plural case markers.

For convenience the stems are separated from the suffix with a hyphen in Table 2.
It shall be observed in Table 2, that the morphophonemic y is inserted in the Singular
Locative and Accusative cases.

3.2 Verbs

Kannada verbs occur in both Finite and non-Finite form. Most of the verb stems are in
non-finite form for which tense, markers and grammatical forms are added. The
singular polite form of a verb is generally obtained by adding +i, and the plural polite
form is obtained by adding +ri. For example consider the word noVdu (See), the
singular and plural polite forms thus obtained are noVdi (Please See) and noVdiri
(Please be so kind enough to see) [24].

Table 3. Inflected verb and its meaning when different markers are inflected

Inflected Verbs Meaning in English Tense PNG
nadeV- yuttA-ne He will walk Future Progressive 3SM
nadeV - yuttA-lYeV She will walk Future Progressive 3SF
nadeV - yuttA-re They will walk Future Progressive 3P-
nadeV - yuttidda-ne He is walking Present Progressive 3SM
nadeV - yuttidda-lYeV She is walking Present Progressive 3SF
nadeV - yuttidda-re They are walking Present Progressive 3P-
nadeV - yuttidda-nu He was walking Past Progressive 3SM
nadeV - yuttidda-lYu She was walking Past Progressive 3SF
nadeV - yuttidda-ru They were walking Past Progressive 3P-
nadeV - yuttiddI-ya You are walking Present Progressive 2S-
nadeV - yuttidde-ne I am walking Present Progressive 1S-

The important aspect of verb morphology is the Person-Number-Gender (PNG) and
the tense marker concatenated to the verb stems. Unlike English, Indic languages add
Gender information to verbs also. The general syntax for this is Verb stem + Tense
Marker + PNG Marker. The morphotactic changes that occur in a verb when tense
information is added is highly subjective. For example the morphotactic changes in the
verb nadeV (To Walk) is given in Table 3. Note that the PNG marker in Table 3 is as
follows, (1/2/3)(S/P)(M/F/-), where 1/2/3 denote 1st , 2nd , 3rd Person, S/P indicate
Singular/Plural and M/F/- indicates Masculine, Feminine or Neutral Gender.

The development of the proposed prototype morph analyzer for Kannada is
illustrated in the next section.

4 Construction of Morph Analyzer for Kannada

We employ finite state machines (FSM) for the development of Kannada morph analyzer.
The primary attraction for using a FSM, for the purpose of developing a morph analyzer is

12

 Development of Prototype Morphological Analyzer 1

its speed and efficiency. Many natural language processing techniques routinely employ
FSM for shallow parsing, syllabification, tokenization and spell checking[16]. When
compared to many unsupervised methods of learning morphology, an FSM based
morphology development is a more tedious process because all the rules and the
morphophonemic changes have to be hard coded. But the major advantage is that once a
verb or noun paradigm is identified it is just a matter of identifying the stems with which it
can be concatenated. The formal grammar for Kannada nouns and verbs thus identified
and are given in Fig. 1 and Fig. 2 respectively.

Nouns Stem Case
Marker

Plural
Marker

Fig. 1. A Formal Grammar for Kannada Nouns

Verb Stem Tense
Marker

PNG
Marker

Fig. 2. A Formal Grammar for Kannada Verbs

Morphological analysis with FSM is based on the assumption that the mapping of
the words to their underlying analysis forms a regular set, and there is a regular
relation between these sets. In languages where morphotactics is morph concatenation
only, FSM’s are straight forward to apply. Handling non-concatenative or partially
concatenative languages is highly challenging [19].

The development of the Morph analyzer for Kannada is hindered by the lack of
publicly available dataset. Hence we have created a dataset of 500 distinct noun and
verb stems. The dataset is in the Roman transliterated form and we have used the
ITRANS [23] prescribed Kannada to Roman character mapping. One of the major
difficulties in developing any language analysis tools for Indic languages are that the
number of diacritics and compound character symbol totals to about 80,000 in number
[21]. Unlike in English it is just 52 distinct symbols, the upper and lower cases of the
26 alphabets.

The dataset that we have created has 1014 distinct Kannada character symbols.
With this we have implemented a Finite State Transducer(FST) on the AT&T [17]
Toolkit. Transducer is a kind of machine, which translates a given input into a
specified output [20]. For a given input the designed transducer outputs the stem, part
of speech and case marker. A transducer is created for stem with all its morphotactic
changes. The transducer for the noun hani, illustrated in Table 2 is given in Fig. 3.

The circles in the Fig. 3 indicate the states and the arrows indicate the transitions. Each
transition is assigned a symbol of form x:y, where x is the input symbol and y being the
corresponding output symbol. In order to maintain time efficiency, the transducer is

13

11 T.N. Vikram and S.R. Urs

Fig. 3. FST for the noun ‘‘hani’’. Legend-> N: Noun; PL: Plural; DAT: Dative; ABL: Ablative;
ACC: Accusative; LOC: Locative; GEN: Genative.

designed as a deterministic finite automata (DFA). DFA has minimal number of redundant
transitions and hence the complexity of the network is reduced [20].

Consider the word ‘haniyiMda’ of the stem hani illustrated in Table 2, as the input
given to the transducer given in Fig. 3. The transducer produces the output as ‘hani/N
yiMda/ABL’. N stands for noun and ABL stands for ablative. The stem hani is thus
concatenated with the POS tag: N and yiMda is concatenated with the case marker:
ABL. The stem hani/N is output from the transitions 0, 1 and 2, and the case marker
yiMda/ABL is output from the transitions 2, 12, 13 and 14.

Likewise an FST is written for each of the individual Noun and Verb stems to
accept them. An FST accepts a query only if the word is contained within its
transitions and not otherwise. During query the word has to be subjected to parsing by
all the developed FSTs, and the query will be accepted by only one of the FST which
contains the word in its transitions. However passing a query input string to obtain its
part of speech and stem for all the developed FSTs is unwieldy. This is overcome by
merging all the developed FSTs and making it a single unified FST. AT & T toolkit
provides the necessary commands to merge individual FSTs.

The developed prototype analyzer has the capability to handle around 7000 distinct
words from 500 distinct noun and verb stems. But it is far from a being full fledged
morph analyzer as pronoun and adjective morphology have not been included in
this work.

5 Contributions and Conclusion

We have developed a prototype morph analyzer for Kannada for the very first time in the
literature. The developed morph analyzer can be used as a spell checker, POS tagger and
stemmer simultaneously. This serves as an efficient tool for the preprocessing activities of

4

 Development of Prototype Morphological Analyzer 11

Kannada document digitization and content management. The performance of the existing
OCRs for Kannada can be improved by modifying the morph analyzer to a spell checker,
thereby correcting the mistakes, which the OCR has incurred [4]. As it also serves as a
stemmer, Kannada document summarization and classification is made possible, which
has not been attempted yet. It also serves as a tool for language translation because it
identifies the POS tag. POS tag identification is the first pre-processing for machine
translation. Our future goal is to develop a morph analyzer, which can handle words from
15,000 distinct stems from the current capability of 500 stems.

Acknowledgement

This paper is in continuation of the project carried out by T. N. Vikram at the
Microsoft NLP Summer School (May 3-17, 2007) at the Indian Institute of Science
(IISc), Bangalore, India. He would like to thank his team mates V.N. Manjunath
Aradhya, S. Noushath and team mentor S. Baskaran for the support rendered during
the project days at IISc. Support from MSR India is appreciated.

References

1. van Rijsbergen, C.J., Robertson, S.E., Porter, M .F .: New models in probabilistic informa-
tion retrieval, British Library, London (1980)

2. Zhou, Y., Qin, J., Chen, H., Nunamaker, J.F.: Multilingual Web Retrieval: An Experiment
on a Multilingual Business Intelligence Portal. Digital Object Identifier (2005),
doi:10.1109/HICSS.2005.450

3. Idris, N., Syed, S.M.F.D.: Stemming for Term Conflation in Malay Texts. International
Conference on Artificial Intelligence (IC-AI 2001) (2001)

4. Ma, Q.: Natural language processing with neural networks. Language Engineering Con-
ference, pp. 45–56 (2002)

5. Sahoo, K., Vidyasagar, E.V.: Kannada WordNet - A Lexical Database. TENCON Asia
Pacific, pp. 1352–1356 (2003)

6. Setter, S., Goswami, S., Abhishek, H K.: Indexing software for Ancient Kannada Books.
Language Engineering Conference (2002)

7. Braschler, M., Ripplinger, B.: How Effective is Stemming and Decompounding for
German Text Retrieval? Information Retrieval, 291–306 (2004)

8. Tomlinson, S.: Lexical and Algorithmic Stemming Compared for 9 European Languages
with Hummingbird SearchServerTM at CLEF 2003. pp. 286–300 (2003)

9. Lee, C.Y.: Local grammar based lexical analyzer for Korean language. In: Proceedings of
VEXTEL (1999)

10. Min, J., Sun, L., Zhang, J.: ISCAS in English-Chinese CLIR at NTCIR-5. In: Proceedings
of NTCIR (2005)

11. Sharma, U., Kalita, J., Das, R.: Unsupervised learning of morphology for building lexicon
for a highly inflectional language. ACL SIGPHON, 1–10 (2002)

12. Das, M., Borgohain, S., Gogoi, J., Nair, S.B.: Design and implementation of spell checker
for Assamese (2002)

5

11 T.N. Vikram and S.R. Urs

13. Mohanty, S., Santi, P.K., Adhikary, K.P.D.: Analysis and Design of Oriya Morphological
Analyser: Some Tests with OriNet. In: Proceeding of symposium on Indian Morphology,
phonology and Language Engineering, IIT Kharagpur (2004)

14. http://tdil.mit.gov.in/TDIL-OCT-2003/morph%20analyzer.pdf]
15. Hiremath, R.C.: The Structure of Kannada. PhD Thesis. Karnatak University (1961)
16. Amsalu, S., Gibbon, D.: Finite state morphology of Amharic. Workshop on RNLAP

(2005)
17. http://www.research.att.com/ fsmtools/fsm/
18. Sharada, B.A.: Transformation of Natural language into an indexing language: Kannada- A

case study. PhD Thesis. University of Mysore (2002)
19. Kay. Nonconcatenative Finite State Morphology. EACL. pp. 2–10 (1985)

21. Pal, U., Chaudhuri, B.B.: Indian script character recognition. Pattern Recognition 37,
1887–1899 (2004)

22. Cao, H.-L., Zhao, T.-J., Li, S., Sun, J., Zhang, C.-X.: Chinese POS tagging based on
bilexical co-occurrences. Machine Learning and Cybernetics Conf. (2005)

23. http://www.indictrans.in
24. http://ccat.sas.upenn.edu/plc/kannada/

6

20. Aho, A.V., Sethi, R., Ulmann, J.D.: Compilers: Principles, Techniques and Tools.
Addison wesley, Reading (1985)

	Development of Prototype Morphological Analyzer for the South Indian Language of Kannada
	Introduction
	The Current State of the Art in Morphological Analysis
	Kannada Morphology
	Nouns
	Verbs

	Construction of Morph Analyzer for Kannada
	Contributions and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

