
D.H.-L. Goh et al. (Eds.): ICADL 2007, LNCS 4822, pp. 327–336, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automated Template-Based Metadata Extraction
Architecture

Paul Flynn, Li Zhou, Kurt Maly, Steven Zeil, and Mohammad Zubair

Department of Computer Science
Old Dominion University, Norfolk, VA. 23529

{pflynn,lzhou,maly,zeil,zubair}@cs.odu.edu

Abstract. This paper describes our efforts to develop a toolset and process for
automated metadata extraction from large, diverse, and evolving document
collections. A number of federal agencies, universities, laboratories, and com-
panies are placing their collections online and making them searchable via
metadata fields such as author, title, and publishing organization. Manually cre-
ating metadata for a large collection is an extremely time-consuming task, but is
difficult to automate, particularly for collections consisting of documents with
diverse layout and structure. Our automated process enables many more docu-
ments to be available online than would otherwise have been possible due to
time and cost constraints. We describe our architecture and implementation and
illustrate the effectiveness of the tool-set by providing experimental results on
two major collections DTIC (Defense Technical Information Center) and
NASA (National Aeronautics and Space Administration).

Keywords: Metadata, heterogeneous collections, automation.

1 Introduction

A number of federal agencies, universities, laboratories, and companies are placing
their collections online and making them searchable via metadata fields such as
author, title, and publishing organization. To enable this, every document in the col-
lection must be catalogued using the metadata fields. A typical cataloguing process
requires a human to view the document on the screen and identify the required meta-
data fields such as title, author, and publishing organization, and to enter these values
in some online searchable database. Manually creating metadata for a large collection
is an extremely time-consuming task. According to Chrystal [1], it would take about
60 employee-years to create metadata for 1 million documents. These enormous costs
for manual metadata creation suggest a need for automated metadata extraction tools.
The Library of Congress Cataloging Directorate recognized this problem [2] and
sponsored a study, Automatic Metadata Generation Applications (AMeGA) [3], to
identify challenges in automatic metadata creation.

Though time consuming, the task of identifying metadata fields by visually looking
at the document is easy for a human. The visual cues in the formatting of the document
along with accumulated knowledge and intelligence make it easy for a human to iden-
tify various metadata fields. Writing a computer program to automate this task is a

328 P. Flynn et al.

research challenge. Researchers in the past have shown that it is possible to write pro-
grams to extract metadata automatically for a homogeneous collection (a collection con-
sisting of documents with a common layout and structure). Unfortunately a number of
federal organizations such as DTIC [4], GPO [5], and NASA [6] manage heterogeneous
collections consisting of documents with diverse layout and structure, where these pro-
grams do not work well. Furthermore, even with the best possible automated proce-
dures, numerous sources of error exist, including some that cannot be controlled, such
as scanned documents with text obscured by smudges, signatures, or stamps. A com-
mercially viable process for metadata extraction must remain robust in the presence of
these external sources of error as well as in the face of the uncertainty that accompanies
any attempts to automate “intelligent” behavior. How to reach the desired accuracy and
robustness for a large and evolving diverse collection consisting of documents with dif-
ferent layout and structure is still a major research issue. We have developed and dem-
onstrated a novel process for extracting metadata. Among the innovations is a two-part
process that directly addresses the problem of coping with large heterogeneous collec-
tions by breaking the extraction problem into smaller, manageable pieces:

• A new document is classified, assigning it to a group of documents of similar layout.
The goal is to group together documents whose title or other metadata-containing
pages would appear similar when viewed (by humans) from several feet away.

• Associated with each class of document layouts is a template, a scripted descrip-
tion of how to associate blocks of text in the layout with metadata fields. For ex-
ample, a template might state that the text set in the largest type font in the top-half
of the first page is, in that layout, the document title.

We have tested our process and software against the DTIC collection which con-
tains more than one million documents and adds tens of thousands of new documents
each year. The documents are diverse, including scientific articles, slides from presen-
tations, PhD theses, (entire) conference proceedings, promotional brochures, public
laws, and acts of Congress. Contributions to DTIC come from a wide variety of or-
ganizations, each with their own in-house standards for layout and format, so, even
among documents of similar kind, the layouts vary widely. Our tests resulted in an
overall accuracy of 83% for documents with defined templates.

2 Metadata Extraction Approaches

Existing automated metadata extraction approaches can be divided into two main
categories: learning systems and rule-based systems.

Learning techniques including SVM [7][8] and HMM [9] have been employed
with promising results but to relatively homogeneous document sets. The investiga-
tors' own experiments with these techniques [10] suggest a significant decline in ef-
fectiveness as the heterogeneity of the collection increases. We believe that exposure
of these learning systems to heterogeneous collections tends to dilute the internal
probabilities that control their internal transitions. Evolution (changing characteristics
over time, such as acquiring a new source of documents in an unfamiliar format)
poses a difficulty for these techniques as well, as they necessarily exhibit significant
inertia resisting changes to the internally acquired “knowledge” until a significant
number of examples of the new characteristics have been encountered.

 Automated Template-Based Metadata Extraction Architecture 329

Rule-based systems [11][12][13] use programmed instructions to specify how to
extract the information from targeted documents. With sufficiently powerful rule lan-
guages, such techniques are, almost by definition, capable of extracting quality meta-
data. Heterogeneity, however, can result in complex rule sets whose creation and testing
can be very time-consuming [13]. Analogies to typical software complexity metrics [14]
suggest that complexity will grow much more than linearly in the number of rules, in
which case even a well-trained team of rule-writers will be hard-pressed to cope with
changes in an evolving heterogeneous collection and maintain a conflict-free rule set.

Our own approach [10][15] can be seen as a variant of the rule-based approach, but
we finesse the complexity induced by heterogeneity and evolution by first classifying
documents by layout, then providing a template for each layout, so that templates are
independent of one another and individually simple.

3 Architecture and Implementation

3.1 Overview of Architecture

Our template-based metadata extraction system is composed of commercial and public
domain software in addition to components developed by our team. Figure 1 shows the
complete process. Documents are input into the system in the form of PDF files, which
may contain either text PDF or scanned images. Some documents may contain a Report
Document Page (RDP), one of several standardized forms that is inserted into the
document when the document is added to the collection. For the DTIC collection, more
than 50% of the documents contain RDPs offering more than 20 metadata fields.

Fig. 1. Metadata Extraction Flow Diagram

330 P. Flynn et al.

The documents enter the input processing system where they are truncated, proc-
essed by an Optical Character Recognition (OCR) program and converted to a stan-
dardized XML format. The first extraction step is to search for and recognize any
RDP forms present. Any documents without recognized forms enter the non-form ex-
traction process. The non-form extraction process generates a candidate extraction so-
lution from the templates available. After extraction, the metadata from both form and
non-form processing enter the output processor. The output processor is comprised of
two components: a post-processing module and a validation module. The post-
processing module handles cleanup and normalization of the metadata. The final
automated step of the process is the validation module which, using an array of de-
terministic and statistical tests, determines the acceptability of the extracted metadata.
Any document that fails to meet the validation criteria is flagged for human review
and correction.

3.2 Implementation

Input Processing. The source documents come into our system as PDF format files.
These documents range from several pages to hundreds of pages in length. Our research
into the collection has shown that the metadata we are interested in can typically be
found in the first or last five pages of a document. Based on this observation, we use the
program pdftk [16] to split the first and last five pages out of the document and into a
new PDF document. This truncated PDF document is fed into a commercial optical
character recognition (OCR) for conversion into an XML format. We have selected
ScanSoft’s OmniPage Pro as the OCR engine since it supports batch processing of PDF
files with very good results. OmniPage saves the recognized file into a proprietary XML
format which contains page layout as well as the recognized text.

The initial prototype of our extraction engine was based on the proprietary XML
format used by OmniPage Pro version 14. However, by the time of the deployment of
the initial prototype, the site was using OmniPage Pro version 15, which uses a differ-
ent proprietary format that changed every XML tag except for the “word” tag and
added dozens of new tags. Our form-based extraction engine is tightly coupled to the
schema of the incoming XML documents, so supporting this new version of the Om-
niPage schema would require major recoding of the extraction engine, with the end
result being another tight coupling to another proprietary schema. To forestall any fu-
ture conflicts with schema changes, we decided to develop our own schema to de-
couple our project from proprietary schemas.

Independent Document Model (IDM). We based our new Independent Document
Model (IDM) on the OmniPage 14 schema we already supported with our project.
This step helped to minimize the re-coding cost for the extraction engine. The main
structural elements are pages, regions, paragraphs, lines and words. The geometric
boundaries of each of the structural elements are included as attributes. Style informa-
tion such as font face, font size and font style, is recorded at the line and word levels.
Alignment and line spacing are recorded at paragraph elements. Tables are composed
of a sequence of cells that represent a virtual row-column table with each cell encoded
with the upper-left coordinate and the row and column spans of the cell.

 Automated Template-Based Metadata Extraction Architecture 331

IDM documents are created by means of XSL 2.0 stylesheets. A different
stylesheet is used for each type of source document. We have created stylesheets to
support creation of IDM documents from either OmniPage 14 or 15 source docu-
ments. Similarly, additional OCR programs can be supported in the future by creation
of XSL stylesheets to make the transformation.

Form Processing. Our experience with the DTIC collection has shown that about
50% of the documents contain an RDP form. The regular layout present in an RDP
form makes it an attractive target for a template-based extraction process. In order to
take advantage of the geometric relationships between fields in a form, we created an
alternate version of our template language and extraction engine. The metadata fields
are specified by a matching string and a set of rules indicating a positional
relationship to one or more other fields (e.g., Figure 2). The number and layout of the
fields for each different form constitute a unique signature for that form class. If a
template describing form A is applied to a document containing form B, the resultant
metadata returned will contain few if any fields. We have leveraged this property in
the design of our extraction process.

Input processing finishes with IDM based documents exiting the input processor
and entering the form processor. The processor is populated with a template devel-
oped for each version of RDP form found in the collection. We have found six differ-
ent RDP forms within 9825 documents in the DTIC collection. The form processor
runs the extraction process against the document using each of the templates and then
selects the template, which returns the best results. If the form processor fails to
match any template the document moves into the non-form extraction process de-
scribed below. The extracted metadata is sent into the output processor.

Fig. 2. Form-based template fragment. The (line) elements in the (field) elements define string
matching criteria. The (rule) elements defined for each (metadata) element defines the geomet-
ric placement.

Non-form Processing. As shown in Figure 1, documents without an RDP form enter the
non-form processor. The documents are first transformed from IDM into another XML
format called CleanML, which encodes the paragraphs and lines and their corresponding
features (font size, style and alignment) into an XML structure. This simplified structure
allows the extraction engine to repeatedly iterate over the content to apply the rules.

Template Construction. The non-form extraction engine also uses rule-based template
extraction to locate and extract metadata. Each template contains a set of rules designed

 <field num="16->c"><line>c. THIS PAGE</line></field>
</fixed>
<extracted>
 <metadata name="ReportDate">
 <rule relation="belowof" field="1"/>
 <rule relation="aboveof" field="4|5a"/>
 </metadata>

332 P. Flynn et al.

to extract metadata from a single class of similar documents. Figure 3 shows a template
example. Each desired metadata item is described by a rule set designating the begin-
ning and the end of the metadata. The rules are limited by features detectable at the line
level resolution. We hope to address this deficiency in future versions. The first step in
constructing a template is to identify a set of documents which share a structural or vis-
ual similarity. Once a class is selected, the template author determines the set of rules
for each metadata tag by identifying the appropriate function to select the beginning and
the end of the tag.

Fig. 3. Non-form Template fragment

Fig. 4. Validation script fragment for DTIC collection. Each metadata field such as “Unclassi-
fiedTitle” and “PersonalAuthor” is assigned a function for validation.

Non-form Classification. For purposes of our discussion we define a class as a group
of documents from which the metadata can be extracted using the same template. The
members of a class can be selected based on structural or visual similarity. The original
design of our system used several different layout classification schemes in order to
separate the incoming documents into the appropriate class for extraction [10][11]. As
described later, we also created a validation system to flag suspicious data extracted by
a template [17][18]. We found that by applying every available template to a document,
we could use the validator as a post hoc classification system for selecting the proper
template. This post hoc classification system is configured by creating a “validation
script” (e.g., Figure 4), which defines a set of rules to be used for calculating a confi-
dence value for individual fields as well as an overall confidence calculation. Figure 5 is

<val:validate collection="dtic">
 <val:sum>
 <val:field name="UnclassifiedTitle">
 <val:rescale
 function="0.499 -0.01 0.5 0.5 1.0 1.0">
 <val:average>
 <val:dictionary/>
 <val:length/>
 </val:average>
 </val:rescale>
 </val:field>

<structdef pagenumber="3" templateID="arl_1">
 <CorporateAuthor>
 <begin inclusive="current">
 <stringmatch case="no" loc="beginwith">Army

 Research</stringmatch>
 </begin>
 <end inclusive="before">
 <stringmatch case="no"
 loc="beginwith">ARL</stringmatch>
 </end>

 Automated Template-Based Metadata Extraction Architecture 333

an example of the validator output for the “alr_2” template. Table 1 shows the valida-
tion values for five of the eleven templates applied by the extraction system for the same
file. (The other six templates did not produce any output for the file.) The best result,
alr_2, differs from the next best, alr_1, by the extraction of an additional personal au-
thor. This is precisely the behavior and level of discrimination we desire in a classifier.

Fig. 5. Sample fragment of validator confidence values. In this example, we see that the second
CorporateAuthor gives a low confidence score because of the existence of too many words not
in the CorporateAuthor dictionary.

Table 1. Sample validator confidence values for a single file

 Total Field Confidences

Template Confidence
Unclassified
Title

Personal
Author

Corporate
Author

Report
Date

 alr_2 4.694 0.891 0.785 0.760 1.000
 0.713 0.000
 0.546

alr_1 3.436 0.891 0.785 0.760 1.000
 0.000
nsrp 1.000 1.000
rand 0.848 0.848 0.000
nps_thesis 0.000 0.000 0.000

Output Processing. Referring back to the architecture diagram in Figure 1, the extracted
metadata from both form and non-form processes enter output processing for post-
processing cleanup and validation.

Post-processing. The post-processing step is designed to compensate for the inherent
uncertainties involved in the OCR recognition and extraction process. We have de-
signed a modularized post-processing system which can provide a variety of post-
processing functions for each metadata field. For example, modules may be designed

<metadata confidence="4.694">
 <UnclassifiedTitle confidence="0.891">Air Gun Launch
 Simulation Modeling and Finite Element Model
 Sensitivity Analysis</UnclassifiedTitle>

 <PersonalAuthor confidence="0.785">Mostafiz R.
 Chowdhury</PersonalAuthor>

 <PersonalAuthor confidence="0.713">Ala
 Tabiei</PersonalAuthor>
 <CorporateAuthor confidence="0.76">Army Research
 Laboratory Adelphi, MD 20783-1145</CorporateAuthor>
 <CorporateAuthor confidence="0.0"
 warning="CorporateAuthor: too many
 unknown words">Weapons and
 Materials Research Directorate, ARL</CorporateAuthor>

334 P. Flynn et al.

to parse multiple authors from a single personal or corporate author entry and to re-
format date fields into a specific standard.

As an example of a post-processing module, we have one module that attempts to
standardize acceptable field values in form processing and to overcome the potential
for misrecognition by the OCR software. The module analyzes specific fields by
comparing the extracted data to values in an authority file. The module compares
these values via fuzzy string matching based on edit distance. Additionally, the post
processor can match variable phases where the comparison is successful so long as
every word in the authority file entry is contained in the extracted data. We generated
the authority file by extracting field data from more than 9000 documents.

Validation. The final step in our process is the validation step. The primary purpose of
this step is to determine whether or not to flag the extracted metadata for human re-
view. We will be using the same validation engine as mentioned above in post hoc
classification. This validation engine uses statistical models of previously extracted
metadata in the collection along with dictionaries for names and specialized content to
determine the norms for the collection. While the validator will use the same valida-
tion engine to assess individual field values, we do not anticipate using the same
script used in the non-form post hoc classification system. At this point we have not
yet integrated the final validation module into the implementation. We are currently
experimenting to determine an appropriate script to use.

4 Experimental Results

For our experiments we downloaded 9825 documents from the DTIC collection and
728 from the NASA collection. The internal distribution between forms and non-form
documents for the collections are 94% RDP forms for DTIC and 21% RDP for
NASA. We conducted a series of experiments to evaluate the effectiveness of the ex-
traction process.

4.1 Form Extraction Experiments

The large number of form documents involved prohibits inspecting every document
during testing. As such, we randomly sampled 100 form documents from the DTIC col-
lection distributed roughly along the same distribution of the collection. We examined

Table 2. Results for DTIC Form Extraction

Class Samples Recall Precision

Citation_1 10 100% 100%

Sf298_1 30 91% 95%

Sf298_2 30 98% 99%

Sf298_3 10 68% 96%

Sf298_4 10 100% 100%

Control 10 96% 100%

 Automated Template-Based Metadata Extraction Architecture 335

each of the 100 documents and determined the accuracy of the extracted metadata. The
results of this experiment are shown in Table 2. Note that the low recall found under the
SF298_3 class was due to poor quality of the source documents and resulting OCR rec-
ognition.

4.2 Non-form Extraction Experiments

We conducted experiments to confirm the efficiency of the post hoc classification
system and the ability to extract the metadata. To test the ability of the system to se-
lect the appropriate template for extraction, we manually classified the DTIC non-
form documents into 37 separate classes with at least 5 members. We wrote templates
for the 11 largest classes and tested the ability of the extractor to correctly identify the
proper class. We achieved an 87% classification accuracy when compared to manual
classification results.

The overall accuracy for the non-form extractor was 66% for DTIC and 64% for
NASA. The lower value is mostly due to the fact that we have only written a limited
number of templates. Assuming that we write all the necessary templates, we expect
accuracy in the 90% range.

5 Conclusions and Future Work

We have described our two-stage approach to metadata extraction that extends previ-
ous research in metadata extraction to growing, large, and heterogeneous collections.
The basic system has been implemented and applied to two major collections with
near perfect for documents that contain an RDP form and approximately 65% accu-
racy for those without a form. Significant contributions of our approach are the post-
processing and the validation concepts. In post-processing, we clean metadata via
field- and collection-specific modules. In validation we first obtain a statistical model
of the collection (done only once) and use this model to validate the output.

We still have to design and implement the human correction interface together with
the module that will invoke human intervention based on scores obtained in the vali-
dation phase.

References

1. Crystal, A., Land, P.: Metadata and Search: Global Corporate Circle. In: DCMI 2003 Work-
shop, Seattle, Washington, USA (2003), http://dublincore.org/groups/corporate/Seattle/

2. Library of Congress, Bibliographic Control of Web Resources: A Library of Congress Ac-
tion Plan, http://www.loc.gov/catdir/bibcontrol/actionplan.html

3. Greenburg, J., Spurgin, K., Crystal, A.: Final Report for the Automatic Metadata Genersa-
tion Applications (AMeGA) Project (2005), UNC School of Information and Library Sci-
ence, http://ils.unc.edu/mrc/amega/

4. Defense Technical Information Center. Public Scientific and Technical Information Net-
work (2007), http://stinet.dtic.mil/str/index.html

5. National Aeronautics and Space Administration. NASA Technical Reports Server (2007),
http://ntrs.nasa.gov/search.jsp

336 P. Flynn et al.

6. U.S. Government Printing Office. A Strategic Vision for the 21st Century. Technical re-
port (2004)

7. Han, H., Manavoglu, E., Zha, H., Tsioutsiouliklis, K., Giles, C.L., Zhang, X.: Rule-based
word clustering for document metadata extraction. In: Preneel, B., Tavares, S. (eds.) SAC
2005. LNCS, vol. 3897, pp. 1049–1053. Springer, Heidelberg (2006)

8. Han, H., Giles, C.L., Manavoglu, E., Zha, H., Zhang, Z., Fox, E.A.: Automatic document
metadata extraction using support vector machines. In: Proceedings of the 3rd ACM/IEEE-
CS Joint Conference on Digital Libraries. International Conference on Digital Libraries,
pp. 37–48. IEEE Computer Society Press, Washington, DC (2003)

9. Seymore, K., McCallum, A., Rosenfeld, R.: Learning hidden Markov model structure for
information extraction. In: AAAI 1999. Workshop on Machine Learning for Information
Extraction (1999)

10. Tang, J., Maly, K., Zeil, S., Zubair, M.: Automated Building of OAI Compliant Repository
from Legacy Collection. In: ELPUB. Proceedings of the 10th International Conference on
Electronic Publishing (June 2006)

11. Mao, S., Kim, J.W., Thoma, G.R.: A Dynamic Feature Generation System for Automated
Metadata Extraction in Preservation of Digital Materials. In: Dial 2004. Proceedings of the
First international Workshop on Document Image Analysis For Libraries, vol. 225, IEEE
Computer Society, Los Alamitos (2004)

12. Bergmark, D.: Automatic Extraction of Reference Linking Information from Online Docu-
ments. CSTR 2000-1821 (November 2000)

13. Klink, S., Dengel, A., Kieninger, T.: Document structure analysis based on layout and tex-
tual features. In: Proc. of Fourth IAPR International Workshop on Document Analysis
Systems, pp. 99–111 (2000)

14. Marciniak, J.J. (ed.): Encyclopedia of Software Engineering, pp. 131–165. John Wiley &
Sons, New York (1994)

15. Tang, J.: Template-based Metadata Extraction for Heterogeneous Collections. PhD thesis,
Old Dominion University (2006)

16. Steward, Sid, pdftk – the PDF toolkit (2007) http://www.accesspdf.com/pdftk/
17. Maly, K., Zeil, S., Zubair, M.: Exploiting Dynamic Validation for Document Layout Classifi-

cation During Metadata Extraction (2007), http://dtic.cs.odu.edu/publications/validationreal07.
doc

18. Maly, K., Zeil, S., Zubair, M., Amrou, A., Aazhar, A., Ratkal, N.: A Scriptable, Statistical Ora-
cle for a Metadata Extraction System. In: First International Workshop on Software Test Evaluat-
ion (STEV 2007), Portland, OR (October 11/12, 2007), (to appear, 2007), http://dtic.cs.odu.edu/
publications/stev07.pdf

	Automated Template-Based Metadata Extraction Architecture
	Introduction
	Metadata Extraction Approaches
	Architecture and Implementation
	Overview of Architecture
	Implementation

	Experimental Results
	Form Extraction Experiments
	Non-form Extraction Experiments

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

