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Abstract. We propose in this paper to integrate the semantic description of the 
image and the relational characterization of its components through an architec-
ture which follows a sharp process for generating image index and query repre-
sentations and computing their correspondence. This architecture relies on an  
expressive representation formalism handling high-level image descriptions and a 
conceptual query framework in an attempt to operate image indexing and retrieval 
operations beyond keyword-based and loosely-coupled state-of-the-art systems. 
At the experimental level, we evaluate its retrieval performance through recall and 
precision indicators on a test collection of 2500 color photographs.  

1   Introduction and Related Work 

State-of-the-art image indexing and retrieval systems are mainly based on characterizing 
the image content through an automatic process mapping low-level extracted features 
(such as color histograms or Gabor matrices for respectively color and texture extrac-
tion) to semantic-based keywords (among them [6,7,10]). The major disadvantage of 
this class of frameworks relies on the specification of restrained and fixed sets of seman-
tic-based keywords which are moreover not sufficient to accurately represent non-
textual documents, such as images. Regarding the fact that several artificial objects have 
high degrees of variability with respect to signal properties, an interesting solution is to 
extend the extracted visual semantics with signal characterizations in order to enrich the 
image indexing vocabulary and query language. Therefore, a new generation of systems 
integrating semantics and signal descriptions has emerged and the first solutions [8,13] 
are based on the association of textual annotations to characterize semantics with a 
relevance feedback (RF) scheme operating on low-level signal features. These ap-
proaches have three major drawbacks: first, they fail to exhibit a single framework uni-
fying low-level data and semantics, which penalizes the performance of the system in 
terms of retrieval efficiency. Then, as far as the query process is concerned, the user is 
to query both textually in order to express high-level concepts and through several and 
time-consuming RF loops to complement his initial query. Therefore, this solution for 
integrating semantics and signal features, relying on a cumbersome query process, does 
not enforce facilitated and efficient user interaction. Finally, these systems do not take 
into account the relational spatial information between visual entities, which affects the 
quality of the retrieval results. Indeed, the need of an expressive index and query lan-
guage for manipulating multimedia documents, and in particular one supporting rela-
tional characterization of the content, has been highlighted in [11]. 
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We propose a unified multi-facetted framework unifying visual semantics and rela-
tional spatial characterization for automatic image retrieval that enforces expressivity 
through the use of symbolic descriptors to characterize the image content. After specify-
ing a fully-automatic framework extracting the visual semantics, we enrich the descrip-
tion of images through the specification of processes establishing a correspondence 
between extracted low-level features and high-level spatial concepts. For example, with 
the semantic concepts “huts” and “grass” one might assign relations such as “above”, 
“disconnected”, “below” and “near” characterizing the fact that huts are above and 
disconnected from the grass, which is itself below and near huts. Therefore, not only do 
we characterize visual semantics, but also spatial relations linking them. For this, we 
consider an efficient operational model that allows relational indexing and is adaptable 
to symbolic image retrieval: conceptual graphs (CGs) [12]. However, contrarily to the 
EMIR2 system [9] which was one of the early attempts at using CGs for image retrieval 
and limited its descriptive power to the basic semantics associated with these graphs 
(i.e. the conjunction of concepts and relations), we extend their operational semantics to 
handle a rich image query language consisting of the 3 major boolean operators (con-
junction, disjunction and negation). Indeed, we are interested in dealing with non trivial 
queries involving the combination of visual semantics and spatial relations and the pos-
sibility to associate boolean operators to these queries. This would allow the user to 
retrieve images with “huts above and disconnected from the grass”, “people at the left 
or at the right of buildings” or “houses not covered by vegetation”...   

In the remainder, we first present the general organization of our image retrieval  
architecture. We deal in sections 3 and 4 with the visual semantics and spatial charac-
terizations. Section 5 will specify the query framework. We finally present in section 6 
the validation experiments conducted on a test collection of 2500 photographs.  

2   An Architecture for Integrating Semantic and Spatial Descriptions 

We propose an image retrieval architecture illustrated in fig. 1 which consists of five 
processing modules to integrate semantic and relational descriptions:  

 The first provides the extraction of the image visual semantics through a statis-
tical joint probability distribution tagging framework. Starting from a physical 
image (seen as a matrix of pixels), this framework allows to highlight the 
perceptually-meaningful visual entities with their associated semantic charac-
terization in the form of a vector of semantic concepts with their recognition 
probabilities (further details are provided in section 3.1). 

 The second module handles the image content representation and is based on a 
multi-facetted image model unifying visual semantics and spatial features. The 
object facet describes an image as a set of image objects (IOs) abstract struc-
tures representing visual entities within an image. The visual semantics facet, 
formally specified in section 3, describes the image semantic content and is 
based on labeling IOs with a semantic concept using the outcome of the seman-
tic extraction module. E.g., in fig. 1, the first IO (Io1) is tagged by the semantic 
concept People. The spatial facet, detailed and formalized in section 4, de-
scribes the relational characterizations between pairs of IOs in terms of sym-
bolic spatial relations. E.g. the first IO (Io1) is inside the second IO (Io2).  
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 The third module consists in applying the image model to specify an image 
index representation and therefore provides a representation of an image docu-
ment in the corpus with respect to the multi-facetted image model. It is a struc-
ture called image index representation. In fig. 1, an image belonging to the 
corpus is characterized by a multi-facetted representation. 

 At the other end of the architecture spectrum, the fourth module allows to trans-
late a query with semantic and relational descriptions into a high-level structure 
with respect to the multi-facetted image model. It is a structure called image 
query representation. In fig. 1, a user full-text query “Images composed of people 
inside water” is translated into an image query representation closely following 
the multi-facetted image model. 

 Finally, the fifth module deals with the correspondence process and the definition 
of a matching function between index and query representations. The image 
query representation is compared to all index representations of image documents 
in the corpus and a relevance value, estimating their degree of similarity is com-
puted in order to rank all image documents relevant to a query. The search results 
are then displayed through the interface of the image retrieval system. 

                                     

Query: Images composed of people inside water

Image 

Query 
Model 

Spatial facet

People Water

Inside

Io Io
Object facet

Face: 0.7, Ground: 0.3 People: 0.5, Water: 0.3, 
Sky: 0.2

Water: 0.5, Sky: 0.4, Wall: 0.1

Spatial facet

People Water
Visual semantics facet

Inside

Io1 Io2
Object facet

Face

Io3

Semantic 
Extraction 

Index 
Model

Correspondence

Visual semantics facet

 

Fig. 1. Image retrieval architecture coupling semantic and relational descriptions 
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In order to instantiate the image model within an image retrieval framework, we choose 
a representation formalism capable to represent IOs, the visual semantics they convey and 
their relational characterizations: CGs. They have indeed proven to adapt to the symbolic 
approach of image retrieval [1,2,9,11] and allow to represent components of our image 
retrieval architecture and specify expressive index and query representations. Formally, a 
CG is a finite, bipartite, connex and oriented graph. It features two types of nodes: 
concept and relations. In the graph [2007] (Year) [ICADL] (Location) [Hanoi], 
concepts are between brackets and relations between parenthesis. This graph is se-
mantically interpreted as: the ICADL conference of year 2007 is held in Hanoi. Con-
cepts and relations are organized within lattice structures ordered by the IS-A relation.  

3   The Visual Semantics Facet 

3.1   Extracting the Semantics  

Semantic concepts are learned and then automatically extracted given a visual ontol-
ogy. Its specification is strongly constrained by the application domain [9]. Indeed 
dealing with corpus of medical images would entail the elaboration of a visual ontol-
ogy that would be different from an ontology considering computer-generated images. 
In this paper, our experiments in section 6 are based on collections of general-purpose 
color photographs. 

Several experimental studies presented in [10] have led to the specification of 
twenty categories or picture scenes describing the image content at a global level. 
Web-based image search engines (google, altavista) are queried by textual keywords 
corresponding to these picture scenes and 100 images are gathered for each query. 
These images are used to establish a list of semantic concepts characterizing objects 
that can be encountered in these scenes. A total of 72 semantic concepts to be learnt 
and automatically extracted are specified. Fig. 2 shows their typical appearance. 

  

Fig. 2. Semantic concepts: ground, sky, vegetation, water, people, mountain, building 

The indexing process is characterized by a statistical model which takes into ac-
count the joint distribution of semantic concepts on the one hand and symbolic signal 
features (color and texture) on the other hand. Starting from a learning set which in-
cludes IOs corresponding to visual entities, this model is instantiated by considering 
color and texture features of sets of connected rectangular regions used to generate the 
semantic concepts and their associated probabilities from this joint distribution. This 
process allows to highlight perceptually-meaningful visual entities with their associ-
ated semantic characterization in the form of a vector of semantic concepts with their 
recognition probabilities (further details can be found in [2]). 

E.g., three visual entities linked to three IOs are highlighted from the example im-
age in fig. 1. The first IO (Io1) is linked to a vector of semantic concepts with the 
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highest recognition probability corresponding to the concept people, the second IO 
(Io2) to a vector of semantic concepts with the highest recognition probability corre-
sponding to the concept water and the third IO (Io3) to a vector of semantic concepts 
with the highest recognition probability corresponding to the concept face. 

3.2   Model of the Visual Semantics Facet  

IOs are represented by Io concepts and the semantic concepts are organized within a 
multi-layered lattice ordered by a specific/generic order. An instance of the visual se-
mantics facet is represented by a set of CGs, each one containing an Io type linked 
through the conceptual relation is_a to a semantic concept. Let us note that only the 
semantic concept with the highest recognition probability is considered as far as the CG 
representation of the facet is concerned.  The graph controlling the generation of all 
visual semantics facet graphs, called visual semantics graph, is: [Io] (is_a) [SC]. 
E.g., graphs [Io1] (is_a) [people], [Io2] (is_a) [water] and [Io3] (is_a) [face] 
are the representation of the visual semantics facet in fig. 1 and can be translated as: the 
first, second and third IOs are respectively associated to semantic concepts people, 
water and face.  

4   The Spatial Facet: From Low-Level Spatial Features to  
High-Level Relational Description 

Taking into account spatial relations between visual entities is crucial in the frame-
work of an image retrieval system since it enriches the index structures and expands 
the query language. It is indeed shown in the study published in [5] that people fre-
quently describe images by formulating spatial descriptions such as «…at the left 
of…» or «…below...». Also, dealing with relational information between image com-
ponents allows to enhance the quality of the results of an information retrieval system 
[11]. We study in this part methods used to represent spatial data and deal with the 
automatic generation of high-level spatial relations following a first process of low-
level extraction. 

4.1   The Relation-Oriented Approach 

In order to model the spatial data, we consider the «relation-oriented» approach which 
allows to explicitly represent the relevant spatial relations between IOs without taking 
into account their basic geometrical features. Our study features the four modeling 
and representation spaces: 

– The Euclidean space gathers the coordinates of image pixels. Starting with this in-
formation, all knowledge related to the other representation spaces can be deduced.  

– We consider in the topological space five relations inspired from [3] and justify 
this choice by the fact that they are exhaustive and relevant in the framework of an 
image retrieval system. Let io1 and io2 two IOs, these relations are (s1=P,io1,io2) : 
‘io1 is a part of io2’, (s2=T,io1,io2) : ‘io1 touches io2 (is externally connected)’, 
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(s3=D,io1,io2) : ‘io1 is disconnected from io2’, (s4=C,io1,io2) : ‘io1 partially cov-
ers (in front of) io2’ and (s5=C_B,io1,io2) : ‘io1 is covered by (behind) io2’. Let 
us note that these relations are mutually exclusive and characterized by the the 
important property that each pair of IOs is linked by only one of these relations.  

– The Vectorial space gathers the directional relations: Right (s6=R), Left (s7=L), 
Above (s8=A) and Below (s9=B). These relations are invariant to basic geometrical 
transformations such as translation and scaling. 

– In the metric space, we consider the fuzzy relations Near (s10=N) and Far (s11=F).  

4.2   Automatic Spatial Characterization 

4.2.1   Topological Relations 
In our spatial modeling, an IO io is characterized by its center of gravity io_c and by 
two pixel sets: its interior, noted io_i an dits border io_b. We define for an image an 
orthonormal axis with its origin being the image left superior border and the basic 
measure unity the pixel. All spatial characterizations of an object such as its border, 
interior and center of gravity are defined with respect to this axis. 

In order to highlight topological relations between IOs, we consider the intersec-
tions of their interior and border pixel sets through a process adapted from [4]. Let io1 
and io2 be two IOs, the four intersections are: io1_i ∩ io2_i, io1_i ∩ io2_b, io1_b ∩ 
io2_i and io1_b ∩ io2_b. 

Each topological relation is linked to the results of these intersections as follows: 

 (P, io1, io2) iff. io1_b∩io2_b = ∅, io1_i∩io2_b ≠ ∅, io1_b∩io2_i=∅ & io1_i∩io2_i ≠ ∅ 
 (T, io1, io2) iff. io1_b∩io2_b ≠ ∅, io1_i∩io2_b= ∅, io1_b∩io2_i=∅ & io1_i∩io2_i=∅ 
 (D, io1, io2) iff. io1_b∩io2_b=∅, io1_i∩io2_b=∅, io1_b∩io2_i=∅ & io1_i∩io2_i=∅ 
 (C,io1,io2) iff. io1_b∩io2_b=∅, io1_i∩io2_b=∅, io1_b∩io2_i ≠ ∅ & io1_i∩io2_i ≠ ∅ 
 (E_C, io1, io2) iff. io1_b∩io2_b=∅, io1_i∩io2_b ≠ ∅, io1_b∩io2_i=∅ & 
io1_i∩io2_i ≠  ∅ 

The strength of this computation method relies on associating topological relations 
to a range of necessary and sufficient conditions linked to spatial attributes of IOs (i.e. 
their interior and border pixel sets).  

4.2.2   Directional Relations 
The computation of directional relations between io1 and io2 is based on their centers of 
gravity io1_c(x1c, y1c) and io2_c(x2c, y2c), the minimal and maximal coordinates along 
x axis (x1min, x2min et x1max, x2max) as well as the minimal and maximal coordinates 
along y axis (y1min, y2min et y1max, y2max) of their four extremities. 

We will say that io1 is at the left of io2, noted (L,io1,io2) iff. x1c < x2c ∧  x1min < x2min 

∧  x1max < x2max. Also, io1 is at the right of io2, noted (R,io1,io2) iff. x1c > x2c ∧  
x1min > x2min ∧  x1max > x2max. 

We will say that io1 is above io2, noted (A,io1,io2)  iff. y1c>y2c ∧  y1min>y2min ∧  
y1max>y2max. Also, io1 is below io2, noted (B,io1,io2) iff. y1c < y2c ∧  y1min < y2min 
∧  y1max < y2max. 

We illustrate these definitions in fig. 3 where the IO corresponding to huts (io1) is 
above the IO corresponding to the grass (io2). It is however not at the left of the latter 
since x1c < x2c but x1min > x2min. 
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Fig. 3. Characterization of directional relations 

4.2.3   Metric Relations 
In order to distinguish between the Near and Far relations, we use the constant Dsp= 

d( 0 ,0.5*[σ1,σ2]
T) where d is the Euclidean distance between the null vector 0 and 

[σ1,σ2]
T is the vector of standard deviations of the localization of centers of gravity for 

each IO in each dimension from the overall spatial distribution of all IOs in the cor-
pus. Dsp is therefore a measure of the spread of the distribution of centers of gravity of 
IOs. This distance agrees with results from psychophysics and can be interpreted as 
the bigger the spread, the larger the distances between centers of gravity are. Two IOs 
are near if the Euclidean distance between their centers of gravity is inferior to Dsp, 
far otherwise. 

4.3   Conceptual Index and Query Structures for the Spatial Facet 

4.3.1   Spatial Index Structures 
IOs are related pairwise through an index spatial meta-relation (ISM), compact structure 
summarizing spatial relationships between these IOs. ISMs are supported by a vector 
structure sp with eleven elements corresponding to the previously explicited spatial 
relations. Values sp[i], i ∈ [1,11] are booleans stressing that the spatial relation si links 
the two considered IOs. E.g., Io1 is related to Io2 through the ISM <P:1, T:0, D:0, C:0, 
C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>, translated as Io2 being part of (inside) Io3. 

4.3.2   Spatial Query Structures 
Our framework proposes an expressive query language which integrates visual seman-
tics and symbolic spatial characterization through boolean operators. A user shall be 
able to link visual entities with a boolean conjunction of spatial relations such as in Q1: 
“huts above AND disconnected from grass”, a boolean disjunction of spatial relations 
such as in Q2: “people at the left OR at the right of buildings” and a negation of spa-
tial relations such as in Q3: “houses NOT covered by vegetation”.  

Three types of conceptual structures are specified to support the previously defined 
query types. And spatial meta-relations (ASMs) represent the signal distribution of an 
IO by a conjunction of spatial relations; Or spatial meta-relations (OSMs) by a disjunc-
tion of spatial relations and Not spatial meta-relations (NSMs) by a negation of spatial 
relations. The ASM <P:0, T:0, D:1, C:0, C_B:0, R:,0 L:0, A:1, B:0, N:0, F:0>AND, the 
OSM <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, T:0, B:0, N:0, F:0>OR and the NSM <P:0, 
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T:0, D:0, C:0, C_B:1, R:0, L:0, T:0, B:0, N:0, F:0>NOT respectively correspond to the 
spatial characterizations featured in queries Q1, Q2 and Q3. 

4.4   Graph Representation of the Spatial Facet 

Spatial meta-relations are elements of partially-ordered lattices organized with respect 
to the type of the query processed (we will not detail this organization here). There 
are 2 types of basic graphs controlling the generation of all the spatial facet graphs. 
Index spatial graphs link two IOs through an ISM: [Io1] (ISM) [Io2]. Query 
spatial graphs link two IOs through And, Or or Not spatial meta-relations: 
[Io1] (ASM) [Io2]; [Io1] (OSM) [Io2] and [Io1] (NSM) [Io2].  

Eg, the index spatial graph [Io1] [<P:1, T:0, D:0, C:0, C_B:0, R:0, L:0, A:0, B:0, N:0, 
F:0>] [Io2] is a graph of the index representation of the spatial facet in figure 1 and is 
interpreted as: io1 is linked to io2 through the index spatial meta-relation <P:1, T:0, 
D:0, C:0, C_B:0, R:0, L:0, A:0, B:0, N:0, F:0> (i.e. io1 being part of io2). 

5   The Query Module 

Our conceptual architecture is based on a unified framework allowing a user to query with 
both semantic and relational descriptions. The representation of a query is, like image 
index representations, obtained through the combination (join operation [12]) of CGs over 
the visual semantics and spatial facets. E.g., the query Q1 is represented by the CG: 

        [Io1] (sct) [Huts]            [Io2] (sct) [Grass] 
                   [<P:0, T:0, D:1, C:0, C_B:0, R:,0 L:0, A:1, B:0, N:0, F:0>AND] 
Also, the query Q2 is represented by the CG: 
        [Io1] (sct) [People]            [Io2] (sct) [Buildings] 
                   [<P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, T:0, B:0, N:0, F:0>OR] 
Finally, the query Q3: “houses not covered by vegetation” is represented by the CG: 
       [Io1] (sct) [Houses]           [Io2] (sct) [Vegetation] 
                   [<P:0, T:0, D:0, C:0, C_B:1, R:0, L:0, T:0, B:0, N:0, F:0>NOT] 

The evaluation of similarity between index and query representations is achieved 
through a correspondence function: the CG projection operator. This operator allows to 
identify within the index CG sub-graphs with the same structure as the query CG, with 
nodes being possibly restricted (i.e. they are specializations of the query CG nodes). 

6   Validation Experiments: An Application to Home Photographs  

We implement the theoretical framework presented in this paper and validation experi-
ments are carried out on a corpus of 2500 color photographs used as a validation corpus 
in [1,2,7]. IOs within the 2500 photographs are automatically assigned a vector of se-
mantic concepts with their corresponding recognition probabilities as shown in 
section 3.1 and characterized with a visual semantics facet CG as shown in section 3.2. 
Also, pairs of IO are characterized with spatial index structures (section 4.3.1) and 
linked through an index spatial graph as shown in section 4.4. 

As opposed to state-of-the-art keyword-based frameworks [6,7,10], we wish to 
retrieve photographs that represent elaborate image scenes and propose 12 queries 
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characterizing relative location of visual entities such as people near vegetation along 
with their ground truths among the 2500 photographs. The evaluation of our formal-
ism is based on the notion of image relevance which consists in quantifying the corre-
spondence between index and query images. We compare our system with a system 
based on a semantic keyword-based approach: the Visual Keyword system S1 [7] and a 
state-of-the-art loosely-coupled system S2 combining a textual framework for query-
ing on semantics and a RF process operating on low-level signal features. 

For each proposed query in table 1, we construct relevant textual query terms using 
corresponding visual semantics and spatial characterizations as input to our system (e.g. 
people near vegetation). The retrieval results for this query are given in fig. 4. S1 proc-
esses three series of three random relevant photographs for each query (they correspond 
to people near vegetation as far as our example query is concerned). Also each query in 
table 1 is translated in relevant textual data to be processed by the semantic framework 
of S2 (‘people, vegetation’ for people near foliage). Then to refine the results, three 
random relevant photographs are selected as input to the RF framework. 

 

Table 1. Queries 

People touch pool 

Buildings left and right of people 

People in (part of) water 

Foliage left and right of people 

People near buildings 

People in front of mountains 

  Close-up of people (people not related  to 
any IO) 

  Close-up of buildings (buildings not 
related to any IO) 

People in front of buildings 

People near foliage 

Cityscape (view from far) 

Mountain (view from far)  
Fig. 4. Results for “People near vegetation” 
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Recall/precision curves of fig. 5 illustrate the average results obtained for all que-
ries considering the corpus of 2500 images: the curve associated with the Sem/Spa 
legend illustrates the results in recall and precision obtained by our system, the curve 
associated with the VK legend by S1 and the curve associated with the SignSymb leg-
end by S2. The average precision of our system (0.391) is approximately 17,1% higher 
over the average precision of the VK system (0.334) and approximately 28,2% higher 
over the average precision of the loosely-coupled state-of-the-art system (0.305). We 
notice that improvements of the precision values are significant at all recall values. 
This shows that when dealing with elaborate queries which combine multiple sources 
of information (here visual semantics and spatial characterizations) and thus require a 
higher level of abstraction, the use of an “intelligent” and expressive representation 
formalism (here the CG formalism within our framework) is crucial. As a matter of 
fact, our system complements automatic keyword-based approaches (in this case the 
VKs) through the enrichment of their query frameworks with spatial characterization. 
Moreover, it outperforms state-of-the-art loosely-coupled solutions by proposing a 
unified high-level and expressive framework optimizing user interaction and allowing 
to query with precision over visual semantics and symbolic spatial relations. 
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