
A Ranking Scheme for XML Information
Retrieval Based on Benefit and Reading Effort

Toshiyuki Shimizu and Masatoshi Yoshikawa

Graduate School of Informatics, Kyoto University
shimizu@soc.i.kyoto-u.ac.jp, yoshikawa@i.kyoto-u.ac.jp

Abstract. XML information retrieval (XML-IR) systems search for rel-
evant document fragments in XML documents for given queries. In top-
k search, users control the size of output by an integer k. In XML-IR,
however, each output element varies widely in size. Consequently, total
output size of top-k elements is uncontrollable by simply giving an inte-
ger k. In addition, search results may have nesting elements. If a system
orders result elements simply by their relevance, we may browse the same
content more than once due to the nestings. To handle these problems,
we propose a new ranking method that enables us to browse search re-
sults of XML-IR systems efficiently by introducing the concepts of benefit
and reading effort. We also propose an evaluation metrics based on ben-
efit and reading effort, and compared the metrics with existing XML-IR
metrics by experiments.

1 Introduction

When we want to retrieve information about a topic from large amount of XML
documents, keyword search is one solution to retrieve document fragments rel-
evant to the topic. XML information retrieval (XML-IR) systems generally use
elements as search units, and output ranked elements relevant to given queries.
For example, in the case of scholarly articles marked up in XML, XML-IR sys-
tems retrieve and rank such elements corresponding to sections, subsections, and
paragraphs.

INEX 2005 [1] defines three element retrieval strategies for the purpose of
evaluating the effectiveness of XML-IR systems. A system with the Thorough
strategy simply retrieves relevant elements from all elements and ranks them
in order of relevance. The retrieved elements using the Thorough strategy may
overlap due to nestings. By selecting the element with the highest score in a path
and removing the overlapping elements, the system with the Focussed strategy
retrieves only focused elements. Though the systems can exclude redundancy
by using the Focussed strategy, we can not find the non-focused elements in
the result and may lose some possible benefits of XML-IR [2]. A system with
the FetchBrowse strategy first identifies relevant documents (the fetching phase)
and then identifies relevant elements within a fetched document (the browsing
phase).

We considered that following problems exist in the element retrieval of
XML-IR.

D.H.-L. Goh et al. (Eds.): ICADL 2007, LNCS 4822, pp. 230–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Ranking Scheme for XML-IR Based on Benefit and Reading Effort 231

– Variety of element size
Each element retrieved by XML-IR systems varies widely in size. An element
may be large one such as root element, which is corresponding to whole
document, or small one. Therefore, the cost for reading the content of a
retrieved element is unknown beforehand.

– Handling nesting elements
When users browse the content of nesting elements, by browsing the content
of an ancestor element, users can browse the content of all its descendant
elements. Though it is important to take the nestings into consideration, the
Focussed strategy, which is the only strategy in INEX 2005 that considers
about nestings, lacks flexibility because it does not retrieve elements except
focused elements.

In general, users of XML-IR systems browse search results from top ranked
element to lower ranked elements. Therefore, fast retrieval of high ranked ele-
ments is important and there are some researches on top-k search of XML-IR
[3,4]. However, total output size of top-k elements is uncontrollable by simply
giving an integer k. We considered that top-k search is not suited for XML-IR,
and using the cost for reading the content of a retrieved element, which we call
reading effort, instead of an integer k is better alternative to control the total
output size. In addition, the search results of top-k search using the Thorough
strategy may contain nesting elements; therefore top-k search is not suited for
XML-IR also in this point.

For example, when we retrieve top-100 result elements using our system pro-
posed in [5] with the Thorough strategy, The total result size of top-100 elements
are varied about 30 times between the largest and the smallest for 40 queries of
INEX 2005. We also observed that about 15% of top-100 total result size was
overlapping content on average.

To overcome these problems, we introduced benefit which is the amount of gain
by reading the element and reading effort which is the cost of reading elements,
and used them in result retrieval and ranking algorithm. By considering that
the benefit does not increase even if we read the same content repeatedly, we
handle the problem of content overlapping by nestings. We supposed that users
specify the threshold amount of reading effort they can spend in reading the
result elements. The system retrieves elements that have larger benefit within
the specified reading effort. The scores for result elements can be viewed as
efficiency of obtaining benefit from the element, and we supposed the score of an
element is calculated by dividing benefit by reading effort. We also propose an
evaluation metrics based on benefit and reading effort.

To handle nestings in search results of XML-IR, Clarke [2] proposed to control
overlapping by re-ranking the descendant and ancestor elements of the reported
element. Clarke supposes each result element can be browsed with the same
cost, whereas we introduced reading effort for the ranking algorithm and the
evaluation metrics.

For evaluation metrics, we used assessments for XML test collection of INEX
2005. We compared the metrics with existing XML-IR metrics by experiments,
and found there is not strong correlation between them.

232 T. Shimizu and M. Yoshikawa

2 Benefit and Reading Effort

To handle nesting elements and variety of element size, we introduced benefit and
reading effort. In this section, we discuss the properties of benefit and reading
effort.

2.1 Benefit

For a given query, the benefit of an element is the amount of gain about the
query by reading the element. We describe the benefit of element e as e.benefit.
Basically, it is natural to consider that the benefit of an element is sum of the
benefit of the child elements. However, by reading all child elements together,
the content of the child elements may complement each other; hence the benefit
of the parent element may larger than sum of the benefit of the child elements.
We considered that the following assumption holds on benefit.

Assumption 1. Property of Benefit
The benefit of an element is greater than or equal to the sum of the benefit of
the child elements.

2.2 Reading Effort

The reading effort of an element is the amount of cost by reading the content
of the element. We describe the reading effort of element e as e.reading effort.
Note that reading effort does not depend on queries and can be calculated based
on the element itself. Basically, it is natural to consider that the reading effort of
an element is sum of the reading effort of the child elements. However, by reading
all together, we can continuously read with the same context; hence the reading
effort of the parent element may smaller than sum of the reading effort of the
child elements. We considered that the following assumption holds on reading
effort.

Assumption 2. Property of Reading Effort
The reading effort of an element is less than or equal to the sum of the reading
effort of the child elements.

3 Ranking Method Based on Benefit and Reading Effort

XML-IR systems we propose calculate the benefit of elements for the given query,
and rank the result elements in order of efficiency to obtain benefit. We supposed
the score is calculated by dividing benefit by reading effort, and it corresponds to
the efficiency to obtain benefit. We describe the score of element e as e.score. We
also supposed that users specify the threshold amount of reading effort, and the
system retrieves elements that have larger benefit within the specified reading
effort.

A Ranking Scheme for XML-IR Based on Benefit and Reading Effort 233

article
e0

p
e4

p
e3

sec
e1

sec
e5

p
e2 e6 e7

pp

28
18

23
8

5
2

10
9

15
5

50
28

15
0

10
8

Fig. 1. An example of calculated benefit and reading effort

Figure 1 shows an example of benefit and reading effort calculated by a system
for a query. In Figure 1, the tree structure of an XML document is represented,
and benefit and reading effort are shown in the form of benefit/reading effort
adjacent to the element. For the sake of simplicity, we do not assume any concrete
calculation formula for benefit and reading effort in Figure 1, however the values
meet Assumption 1 and Assumption 2.

When a system calculate benefit and reading effort for a query as Figure 1, if a
user specifies the threshold of reading effort to 15, the element set that maximize
benefit is {e3, e2}, whereas if 20 is specified, the element set that maximize benefit
is {e3, e7}. The problem of maximizing benefit is a variant of knapsack problems
that has restriction of nestings. However, the system in the running example
that maximize benefit does not output the content of e2 when 20 is specified
as the threshold of reading effort, though the content of e2 is output when 15
is specified. Therefore, a user who specifies the threshold of reading effort to
20 can not obtain information from e2 though she/he pays more reading effort
than a user who can obtain information from e2 by specifying 15. To avoid such
situation, we considered it is important that systems have the property of the
search result continuity. The search result continuity is the property defined as
following.

Definition 1. Search result continuity
When we describe the result element set for the threshold r of reading effort as
Er={er

1, er
2, ..., er

n}, and the result element set for the threshold r′ as Er′
={er′

1 ,
er′

2 , ..., er′

m}, the system has the property of the search result continuity if the fol-
lowing holds for any r and r′. The function ancestor-or-self (e) returns element
set that consist of ancestor elements of e and e itself.

if r ≤ r′ then ∀ e ∈ Er, ∃ e′ ∈ Er′
s.t. e′ ∈ ancestor-or-self (e) ��

In other words, the content of element set for reading effort r must be contained
in the content of element set for reading effort r′ if we increase the threshold
value of reading effort from r to r′.

In addition, when we consider about ranking, we need to take the overlapping
of content by nestings into account. Two patterns are possible for overlapping.

234 T. Shimizu and M. Yoshikawa

1. Contain: The content of a result element contains the content of upper
ranked result element.

2. Contained: The content of a result element is contained by the content of
upper ranked result element.

We think practical systems must hold search result continuity, and the system
greedy retrieve result elements form higher scored elements considering nestings.
The system first retrieves result elements by the Thorough strategy using the
score based on benefit and reading effort. Then, while removing the overlapping
of content by nestings, the system retrieves result elements from higher scored
elements up to the threshold value of reading effort user input.

For removing the overlapping of content by nestings, if the pattern of Contain
occurs the system removes the descendant elements that are already reported
from the result list, and add the result to result list. If the pattern of Contained
occurs the system simply skips the result element because the content of the
element is already obtained.

When a result element e is retrieved, the benefit and reading effort of the
ancestor element ea is affected by e. In the case that the system retrieves ea after
e, the increment of benefit by ea is ea.benefit − e.benefit, and the increment of
reading effort to obtain the increment of benefit by ea is ea.reading effort −
e.reading effort.

When we suppose that users specify the threshold value of reading effort,
the ranking algorithm based on benefit and reading effort considering nestings is
shown in Figure 2.

As an example of ranking scheme, we show the case when a user specifies the
threshold of reading effort to 40, and benefit and reading effort are calculated
like Figure 1. The system retrieves ranked result element list using the Thorough
strategy. In this case, the list is {e3(e3.score = 9/10 = 0.9), e7(0.8), e1(0.64),
e0(0.56), e2(0.4), e5(0.35), e4(0.33)}. This list and threshold of reading effort are
input of the ranking algorithm, and the list is processed from the top ranked
result to lower ranked results. First, e3 is processed and added to the output list
listout. At the same time, the benefit and reading effort of the ancestor elements
e1 and e0 are adjusted. For e1, e1.benefit is decreased to 9 and e1.reading effort
is decreased to 18, and thereby e1.score is set to 0.5 (9/18). For e0, e0.benefit is
decreased to 19 and e0.reading effort is decreased to 40, and thereby e0.score
is set to 0.48 (19/40). The system reflects these adjustments, and re-rank the
elements in listin. In this case, listin becomes {e7(0.8), e1(0.5), e0(0.48), e2(0.4),
e5(0.35), e4(0.33)}. Then, e7 is processed and listout becomes {e3, e7}, and listin
becomes {e1(0.5), e2(0.4), e0(0.37), e4(0.33), e5(0)}. Next, e1 is processed and the
system removes e3 from listout because e3 is the descendant of e1. listout becomes
{e7, e1}, and listin becomes {e2(0.4), e4(0.33), e0(0.17), e5(0)}. Subsequently,
e2 and e4 are processed, however they are skipped because the ancestor element
e1 is already in listout. Next, e0 is processed, however if we retrieve e0, the
cumulated reading effort exceeds the specified reading effort, so the processing
terminates and the system outputs listout {e7, e1} as the final result.

A Ranking Scheme for XML-IR Based on Benefit and Reading Effort 235

Input: listin, // result list of Thorough
reading effortt // threshold of reading effort

Output: listout

reading effortc = 0 // cumulated reading effort
while ((e = top(listin))! = null) do

remove e from listin

skip = false
remove = empty
for (eo in listout) do

if (eo is ancestor of e) then
skip = true
break

end if
if (eo is descendant of e) then

add eo to remove
end if

end for
if (skip) then

continue
end if
reading effortc+ = e.reading effort
if (reading effortc > reading effortt) then

break
end if
for (ed ∈ remove) do

remove ed from listout

end for
add e to listout

for (ea ∈ e.ancestors) do
ea.benefit− = e.benefit
ea.reading effort− = e.reading effort
rerank ea in listin

end for
end while
return listout

Fig. 2. Ranking algorithm based on benefit and reading effort

4 Evaluation Metrics

For evaluating systems based on benefit and reading effort, we can compare
cumulated benefit by the system with cumulated benefit by the system which
knows actual benefit for each element for a certain threshold of reading effort.
The system which knows actual benefit for each element can use the best list of
Thorough as input, and we call this system BTIL (Best Thorough Input List)
system. Implementers of XML-IR systems develop better system by guessing the
benefit of each element close to the actual benefit. We supposed that we can use

236 T. Shimizu and M. Yoshikawa

article
e0

p
e4

p
e3

sec
e1

sec
e5

p
e2 e6 e7

pp

28
20

23
13

5
0

10
10

15
10

50
35

15
13

10
0

Fig. 3. Actual benefit and reading effort

0
5

10
15
20
25
30
35
40

Su
m

 o
f

be
ne

fit

threshold of reading effort

B T IL
system

Fig. 4. b/e graph

common reading effort value between the BTIL system and the system to be
evaluated, because reading effort is the value that is not depend on queries.

As an example, we explain about the case the system calculates benefit and
reading effort like Figure 1, however the actual benefit and reading effort are
those shown in Figure 3. In this case, for the threshold value of reading effort
40, the system can obtain 20 benefit by retrieving {e7, e1}, however the BTIL
system can obtain 33 benefit by retrieving {e3, e6, e4}.

We can draw a graph by plotting the cumulated benefit by the system and
the cumulated benefit by the BTIL system changing the threshold of reading
effort. We call this graph benefit/effort graph (b/e graph, for short), and use for
evaluation. Figure 4 shows the b/e graph for the running example. In Figure 4,
‘BTIL’ is for BTIL system and ‘system’ is for the system to be evaluated.

In this b/e graph, for a given reading effort r, the obtained benefit is the
benefit of the point having maximum reading effort under r. For example, if
the threshold value of reading effort was 30, the obtained benefit for ‘BTIL’ is
23 and 10 for ‘system’. The b/e graph enables us to intuitively understand the
performance of the system compared to the BTIL system.

5 Experiments

We used test collection for XML-IR provided by INEX 2005 project [1]. The
test collection consists of XML documents, queries called topics, and relevance
assessments. We implemented a system using benefit and reading effort, and
obtained b/e graphs for some topics of INEX 2005. In addition, we examined
the correlation between the metrics based on b/e graph and the existing XML-IR
metrics.

5.1 Assessments of INEX 2005

The relevance assessments of INEX 2005 consists of two parts, Exhaustivity (ex)
and Specificity (sp)1. Exhaustivity is the extent to which the element discusses
the topic of request, and it has three levels; Highly exhaustive (HE), Partially
1 The assessments of INEX 2006 only use Specificity.

A Ranking Scheme for XML-IR Based on Benefit and Reading Effort 237

exhaustive (PE), and Not exhaustive (NE) 2. We converted HE, PE, and NE to
numeric as 1, 0.5, 0, respectively. Specificity is the extent to which the element
focuses on the topic of request, and it is calculated by dividing rsize, which is
the length of the content relevant to the topic, by size, which is the whole length
of the element.

We describe ex, sp, rsize, and size of element e as ex(e), sp(e), rsize(e),
size(e). The following formulas hold from the properties of ex, sp, rsize, and
size. e.parent is the parent element of e and e.children is the child element set
of e.

sp(e) = rsize(e)/size(e) (1)
ex(e) ≤ ex(e.parent) (2)

rsize(e) =
∑

ei∈e.children

rsize(ei) (3)

size(e) =
∑

ei∈e.children

size(ei) (4)

5.2 Calculation of Actual Benefit and Reading Effort

We considered calculating actual benefit and reading effort from assessments of
INEX 2005. We used following equations.

e.benefit = ex(e)α ∗ rsize(e)β (α ≥ 0, β ≥ 1) (5)
e.reading effort = size(e)γ (0 ≤ γ ≤ 1) (6)

Equation 5 satisfies Assumption 1 from Equation 2 and 3, and Equation 6 satis-
fies Assumption 2 from Equation 4. Though the assessments of INEX 2006 only
use Specificity, the above equation is compatible with them by setting α = 0.

5.3 System Implementation

The focus of system implementation is how to calculate benefit because we sup-
posed that we can use common reading effort value, which is not depend on
queries, with the BTIL system. We need the calculation formula for benefit that
satisfies Assumption 1.

For this experiment, we used a formula for benefit based on tf − ief 3. When
the tf − ief is large, it is considered that we can obtain much information about
the topic in the input query, so we can guess benefit is large. In addition, when
multiple terms are used in the input query, we considered that benefit becomes
larger if the element contains more terms in the query.

e.benefit =
n

|q| ∗
∑

t∈q

(tf ∗ ief) (7)

2 Too Small (TS) is introduced for small elements, however we regard TS is equal to
NE.

3 ief stands for inverse element frequency.

238 T. Shimizu and M. Yoshikawa

ief = ln
N + 1

ef
(8)

where tf is the term frequency, ief is the inverse element frequency. Here, n is the
number of terms occurring in both q and e, q is the input query, |q| is the number
of terms in q, N is the number of all elements, and ef is the number of elements
that the term occurs. Though some term weighting schemes for XML documents
are proposed [5,6,7], we used simple formula which satisfies Assumption 1, as we
considered it is important to satisfy Assumption 1.

5.4 b/e Graph

We obtained b/e graphs of the system in Section 5.3, considering that the actual
benefit and reading effort are given by the scheme in Section 5.2. As examples,
we show the b/e graphs of the four topics; Topic 203, Topic 206, Topic 207,
and Topic 210 of INEX 2005 in Figure 5, Figure 6, Figure 7, and Figure 8,
respectively. In this experiment, we set α = 0.5, β = 1, and γ = 1. Although the
sum of benefit by the system we implemented is rather low compared to BTIL
system especially in Topic 206, note that the performance of the system is not
related to the usefulness of the proposed scheme.

We examined the comparison of the metrics based on b/e graph with existing
XML-IR metrics. Using 29 Topics of INEX 2005, we calculated for each topic
iMAep (interpolated Mean Average effort precision) [8], which is one of the ex-
isting XML-IR metrics using result list of Thorough, and iMArep (interpolated
Mean Average reading effort precision), which is calculated based on b/e graph

Fig. 5. b/e graph of Topic 203 Fig. 6. b/e graph of Topic 206

Fig. 7. b/e graph of Topic 207 Fig. 8. b/e graph of Topic 210

A Ranking Scheme for XML-IR Based on Benefit and Reading Effort 239

0

0 .1

0 .2

0 .3

0 .4
iM

A
re

p

iMAep

0 .0 -1 .0 -1 .0
0 .5 -1 .0 -1 .0
1 .0 -1 .0 -1 .0
1 .0 -1 .1 -0 .9

Fig. 9. Relationship between iMAep and
iMArep

Table 1. Correlation coefficient be-
tween iMAep and iMArep

α-β-γ correlation coefficient
0.0-1.0-1.0 0.81
0.5-1.0-1.0 0.75
1.0-1.0-1.0 0.48
1.0-1.1-0.9 0.39

with similar concept of iMAep. We used linear interpolation of BTIL plots on b/e
graph as ideal for iMArep. iMAep is calculated based on the rank, while iMArep
is calculated based on the reading effort. The relationship between iMAep and
iMArep is shown in Figure 9. In Figure 9, we examined with four patterns of
parameters α, β, and γ, and they are shown in the form of α-β-γ. Then, we ex-
amined correlation between iMAep and iMArep for one measure of effectiveness
that we evaluate systems based on b/e graph. Table 1 shows the correlation co-
efficients of each pattern. In the case of 0.0-1.0-1.0 or 0.5-1.0-1.0, the correlation
is relatively strong, however in the case of 1.0-1.0-1.0 or 1.0-1.1-0.9, we can say
the correlation is weak. As the correlation of the pattern 1.0-1.1-0.9, which is
considered to be close to the actual situation, is weak, we think the system can
be evaluated with different measure to existing metrics by using the b/e graph
based evaluation.

6 Conclusions

We introduced the concept of benefit and reading effort for XML-IR systems,
and proposed the ranking algorithm and evaluation metrics based on them.
The system retrieves the result elements considering efficiency and removing the
overlapping of content by nestings.

Future works include introducing the concept of switching effort, which is the
cost of switch the result item in the result list, as many results will increase
the cost of browsing. Furthermore, for the XML documents created by marking
up original PDF files, it is natural to show search result elements mapped on a
physical page image [9], and integration with such user interface is also one of
our future works. A major drawback of our current scheme is that users must
specify the threshold of reading effort. We believe that developing user interfaces
that can smoothly retrieve result elements when users change the threshold value
of reading effort is a promising solution.

References

1. Malik, S., Kazai, G., Lalmas, M., Fuhr, N.: Overview of INEX 2005. In: Fuhr, N., Lal-
mas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 1–15. Springer,
Heidelberg (2006)

240 T. Shimizu and M. Yoshikawa

2. Clarke, C.L.A.: Controlling overlap in content-oriented XML retrieval. In: SIGIR,
pp. 314–321 (2005)

3. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine for
TopX search. In: VLDB, pp. 625–636 (2005)

4. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the in-
tegration of structure indexes and inverted lists. In: ACM SIGMOD, pp. 779–790
(2004)

5. Shimizu, T., Terada, N., Yoshikawa, M.: Kikori-KS: An effective and efficient key-
word search system for digital libraries in XML. In: Sugimoto, S., Hunter, J., Rauber,
A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312, pp. 390–399. Springer, Hei-
delberg (2006)

6. Grabs, T., Schek, H.-J.: ETH Zürich at INEX: Flexible information retrieval from
XML with PowerDB-XML. In: INEX, pp. 141–148 (2002)

7. Amer-Yahia, S., Curtmola, E., Deutsch, A.: Flexible and efficient XML search with
complex full-text predicates. In: ACM SIGMOD, pp. 575–586 (2006)

8. Kazai, G., Lalmas, M.: INEX 2005 evaluation measures. In: Fuhr, N., Lalmas, M.,
Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 16–29. Springer, Hei-
delberg (2006)

9. Shimizu, T., Yoshikawa, M.: XML information retrieval considering physical page
layout of logical elements. In: WebDB (2007)

	A Ranking Scheme for XML Information Retrieval Based on Benefit and Reading Effort
	Introduction
	Benefit and Reading Effort
	Benefit
	Reading Effort

	Ranking Method Based on Benefit and Reading Effort
	Evaluation Metrics
	Experiments
	Assessments of INEX 2005
	Calculation of Actual Benefit and Reading Effort
	System Implementation
	b/e Graph

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

