
D.H.-L. Goh et al. (Eds.): ICADL 2007, LNCS 4822, pp. 454–457, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Presentation Lag Reduction by Scheduling Media
Objects for Auto-assembled Multimedia Presentations

from Educational Digital Libraries

Feng-Cheng Lin1, Chien-Yen Lai1, Pai-Hsun Chen2, and Jen-Shin Hong1,*

1 Department of Computer Engineering, National Chi-Nan University, Taiwan
2 Department of Computer Engineering, Nan-Kai Institute of Technology, Taiwan

jshong@ncnu.edu.tw

Abstract. This study investigates the optimization of the ordering of retrieved
media objects from educational multimedia repositories for a continuously-played
presentation such that the total presentation lag through a slow network is
minimized. We present a computation-efficient NEH-based heuristic algorithm
that can obtain a near-optimal solution with minimal computation time. A
simulation experiment shows the average gaps between the idle rate of heuristic
solutions and randomly generated sequences are around 26.3%. The results
indicate the proposed heuristic solution can significantly reduce the presentation
lag as compared to a random ordering approach that is commonly applied in
conventional multimedia repositories.

Keywords: Multimedia presentation, repository, scheduling, flowshop.

1 Introduction

Over the last decade, there is a tremendous growth in education resource repositories
of learning materials. Typically, a query to a specific educational learning material
repository often retrieved a bag of relevant multimedia items. To present the retrieved
media objects, while many repositories typically support interfaces for a user to “click
and play” the interested items one by one for downloading and presentations, there
are also interests that aim to dynamically compose the media items selected into a
continuously-played TV-like multimedia presentation. A continuously-played
presentation particularly suits well for hand-held portable devices with which the
input interfaces are usually less easy to operate than a mouse. In a dynamically
generated presentation, often, the multimedia servers randomly or chronologically
push the content to the users. Since there is a delay between the points when the user
clicks on a presentation and when it is played, the user often experiences certain
idleness while waiting for the transmission of the media objects. To present an auto-
assembled multimedia document online, an important concern for optimally
scheduling the objects is the “total latency” experienced by the user during a
presentation. The presentation latency is particular important when the multimedia

* Corresponding author.

 Presentation Lag Reduction by Scheduling Media Objects 455

presentation is delivered through a low-bandwidth communication channel, which
might be caused by bandwidth limitation in the backbone network, a busy server, or a
client with a slow “last-mile” connection. To cope with such a delay issue, a
commonly used strategy is by the “streaming” technology. However, in a slow
network environment where the media data consumption rate is higher than the data
transmission rate, there are still intermittent idle durations during a streaming-based
presentation. Besides, while the streaming technology has been widely and
successfully applied in commercial web sites, its applicability in real-life application
in campuses is somehow more restricted. In reality, many teachers do not have
knowledge and tools to author and distribute streaming-based multimedia objects.

The media objects in a typical educational repository cover a wide spectrum of
modalities with different formats including text, images, audio, video, and vector
graphics. For a same amount of data transmitted, the anticipated presentation time for
different media types actually differs drastically. How to order them in a prefetch-
enabled continuously-played presentation to reduce the total presentation latency in a
bandwidth-limited environment is interesting to investigate. This paper explores
techniques for optimizing the ordering of media items to provide better Quality of
Service (QoS). The sequence optimization techniques can be integrated into a server
for dynamically assigning the order of the selected media items to be delivered. In the
following, the problem will be formulated and solved using techniques adapted from
conventional studies in operational researches.

2 A Heuristic Solution for Approximating the Optimal Sequence

In principle, the media scheduling problem addressed here can be mapped to a “two-
machine flowshop problem” [1-2] that aims to optimize a scheduling of sequential
jobs to be processed on two machines. The objective is to minimize the completion
time of all jobs. Table 1 gives a mapping of the parameters between the media
scheduling problem and the two-machine flowshop problem. In this study, we present
a computation efficient heuristic algorithm that can be used to generate feasible near-
optimal approximate solutions. The performance of the heuristic approach will be
evaluated empirically using simulations. In the following, we describe the heuristic
approach for solving this sequence optimization problem with a limited buffer size.

Table 1. Correspondence between media sequence problem and two-machine flowshop problem

Sequence optimization problem Two-machine flowshop problem Notation

A set of n media items A set of n jobs M

A media item A job mi

Server First machine server

Client Second machine client

Transmission time for a media item Processing time on the first machine ai

Playback time for a media item Processing time on the second machine bi

Completion time for a media item Completion time for a job ci

Presentation span Makespan (maximum ci of M) Cmax

456 F.-C. Lin et al.

2.1 NEH-Based Approach for Real Time Optimization

A recent study [3-4] compared 25 well-known heuristic approaches for obtaining
near-optimal solutions for flowshop problems and showed that the NEH approach
frequently outperforms other approaches on several benchmark problem sets.
Furthermore, the NEH approach is rather straight forward and easy to implement.
Therefore, we have applied the NEH heuristic solution for the media sequence
optimization problem. We outline the major steps of the NEH heuristic as follows.

Step 1: For each mi, compute ci=ai+bi. Sort the media jobs by non-increasing ci.
Step 2: Take the first two media items in the sorted M, and order the two items

such that the partial completion time of the first two items is minimized.
Step 3: Insert the 3 rd jobs into the partial schedule in the previous step. Since there

are two existing jobs in step 2, there are three possible positions for the
insertion of the 3rd job. Among these 3 positions, select the position which
minimizes the partial completion time under the given buffer size.

Step 4: For k=4 to n do
Insert the k-th job into the previous partial schedule. There are k possible
positions for this insertion. Select the position which minimizes the partial
completion time under the given buffer size.

Step 5: Output the final sequence from step 4.

2.2 Performance Evaluations for the NEH Heuristic Solutions

This section presents the computational experiments designed to evaluate the
effectiveness and efficiency of the proposed NEH-based heuristic approximations for
searching near-optimal media sequences. For each job set, the processing times ai and
bi were randomly generated numbers ranging between 1 and 100. The transmission bit
rate is 160KB/s. The simulation codes were written in C++ language, and the
experiments were performed on an IBM xSeries x206m computer. We conducted a
series of computational experiments with different problem sizes, from 15 to 50
media items. The problem generation procedure yields the test problems that possibly
encompass a wide variety of real life scenarios of online multimedia applications. For
each experiment, 50 different media sets are used. Three different buffer size
constraints, 16,000 KB, 22,400KB, and 30,720 KB respectively, were given for the
experiments. A typical computation time using the NEH algorithm for problems with
20 media objects is less than 0.0005 seconds of CPU time. For each media set, the
idle rate is defined as the ratio of the total idle time and the total transmission time of
the media items, that is,

max_ *100%i

i

C b
Idle rate

a

−
= ∑

∑
 (1)

An Idle_rate close to 1 refers to a case where the media items are badly ordered
such that the playbacks are mostly halted during the downloading time. Table 2 lists
the Idle_rates of the NEH heuristic solutions and randomly generated sequences in
problems with different number of media items. The average Idle_rates of the NEH

 Presentation Lag Reduction by Scheduling Media Objects 457

solutions are 45.2%, 14.4%, and 6.3% for problems with 16,000KB, 22,400KB, and
30,720KB buffer constraints respectively. The average Idle_rates of the random
(RAN) are 75.0%, 47.6%, and 23.0% respectively. The average gaps between the
Idle_rates of NEH and RAN are around 26.3%. These results indicate the NEH
solutions significantly reduce the presentation lags as compared to random sequences.

Table 2. Computation results on the Idle_rate (%)

n Buffer 16,000KB 22,400KB 30,720KB n Buffer 16,000KB 22,400KB 30,720KB

NEH 49.9 18.8 9.2 NEH 42.5 13.0 5.9
15

RAN 76.1 49.7 26.1
35

RAN 73.7 46.5 22.5

NEH 46.3 15.5 6.4 NEH 43.0 11.9 5.2
20

RAN 74.9 46.3 25.3
40

RAN 74.8 44.9 22.3

NEH 45.9 16.4 7.5 NEH 46.1 12.9 4.9
25

RAN 74.8 46.6 23.8
45

RAN 76.3 46.8 21.0

NEH 46.6 15.7 8.0 NEH 40.9 10.8 3.6
30

RAN 76.0 48.1 23.4
50

RAN 73.4 44.1 19.6

3 Conclusions

This study investigated the optimization of the sequences of retrieved media objects such
that the total presentation lag of a continuously-played multimedia presentation through a
slow network is possibly minimized. Aiming for the real time online applications, we
present a computation-efficient NEH-based heuristic algorithm that can obtain a near-
optimal solution with minimal computation time. Overall speaking, the average gap
between the idle rates of heuristic solutions and randomly generated sequences is around
26.3%. These simulation results indicate that the NEH-based heuristic solutions can
significantly reduce the presentation lags as compared to a random ordering approach
which is commonly applied in conventional multimedia applications.

Acknowledgments. This work is supported by the National Science Council of
Taiwan, under grant NSC-94-2422-H-260-002.

References

1. Pinedo, M.: Scheduling Theory, Algorithm, and Systems, 2nd edn. Prentice Hall, New
Jersey (2002)

2. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, R., A.H.G.: Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5(1),
287–326 (1979)

3. Nawaz, M., Enscore, E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow shop
sequencing problem. OMEGA, International Journal of Management Science 11, 91–95
(1983)

4. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop
heuristic. European Journal of Operational Research 165, 479–494 (2005)

	Presentation Lag Reduction by Scheduling Media Objects for Auto-assembled Multimedia Presentations from Educational Digital Libraries
	Introduction
	A Heuristic Solution for Approximating the Optimal Sequence
	NEH-Based Approach for Real Time Optimization
	Performance Evaluations for the NEH Heuristic Solutions

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

