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Abstract. Most of the previous works that disambiguate personal names in Web
search results often employ agglomerative clustering approaches. In contrast, we
have adopted a semi-supervised clustering approach in order to guide the clus-
tering more appropriately. Our proposed semi-supervised clustering approach is
novel in that it controls the fluctuation of the centroid of a cluster, and achieved a
purity of 0.72 and inverse purity of 0.81, and their harmonic mean F was 0.76.

Keywords: Information retrieval, Semi-supervised clustering, Personal name dis-
ambiguation.

1 Introduction

Personal names are often submitted to search engines as query keywords. However, in
response to a personal name query, search engines return a long list of search results
containing Web pages about several namesakes. For example, when a user submits a
personal name such as “William Cohen” to the search engine Google1, the returned
results contain more than one person named “William Cohen.” The results include a
computer science professor, an U.S. politician, a surgeon, and others; these results are
not classified into separate clusters but are mixed together.

Most of the previous works on disambiguating personal names in Web search results
employ several types of unsupervised agglomerative clustering approaches [1], [2], [3],
[4], [5]. However, it is hard for these approaches to guide the clustering process appro-
priately. Therefore, if some Web pages that describe the entity of a person are introduced
in a semi-supervised manner, the clustering for personal name disambiguation would
be much more accurate. Hereafter, we refer to such a Web page as the “seed page.”
Then, in order to disambiguate personal names in Web search results, we introduce
semi-supervised clustering that uses the seed page to improve the clustering accuracy.
Existing methods for semi-supervised clustering can be classified into the following
two categories: (1) constraint-based [6], [7], [8] and (2) distance-based [9], [10]. These
approaches aim at refining pure K-means algorithm [11] that needs to set the number
of clusters K in advance. However, in our study, the number of namesakes in the Web
search results is not known previously. Moreover, they do not consider controlling the
fluctuation of the centroid of a cluster although these algorithms focus on introducing

1 http://www.google.com/
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constraints and learning distances. We believe that in semi-supervised clustering, it is
important to control the fluctuation of the centroid of a cluster that contains a seed page
as well as to introduce constraints in order to obtain highly accurate clustering results.
Focusing on this point, we propose a novel semi-supervised clustering approach that
controls the fluctuation of the centroid of a cluster that contains a seed page.

2 Our Proposed Semi-supervised Clustering

In the following discussion, we denote the feature vector wp of a Web page p in a set
of search results as follows:

wp = (wp
t1 , w

p
t2 , · · · , w

p
tm

), (1)

where m is the number of distinct terms in the Web page p and tk (k = 1, 2, · · · , m)
denotes each term. In our preliminary experiments for generating feature vectors for
clustering in our task, we found that gain [12] is the most effective term weighting
scheme. Using the gain scheme, we also define each element wp

tk
of wp as follows:

wp
tk

=
df(tk)

N

(
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N
− 1 − log

df(tk)
N
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,

where df(tk) is the number of search-result Web pages in which term tk appears and N
is the total number of search-result Web pages. In addition, we also define the centroid
vector of a cluster G as follows:

G = (gt1 , gt2 , · · · , gtm), (2)

where gtk
is the weight of each term in the centroid vector of a cluster and tk (k =

1, 2, · · · , m) denotes each term.
Our proposed approach controls the fluctuation of the centroid of a cluster that con-

tains a seed page when a new cluster is merged into it. In this process, when we merge
the feature vector wp of a search-result Web page into the most similar cluster that con-
tains a seed page, we weight each element of wp by the distance D(G, wp) between G
and wp. We employ the following as a measure of the distance: (i) Euclidean distance,
(ii) Mahalanobis distance, and (iii) adaptive Mahalanobis distance. The adaptive Maha-
lanobis distance is a measure that overcomes the drawback of Mahalanobis distance in
that the value of covariance tends to be large when the number of members of a cluster
is small. Using Equations (1) and (2), we define the new centroid vector of cluster Gnew

after merging a certain cluster into its most similar cluster as follows:

Gnew =

(∑q

wp(G)∈G
wp(G)

+ wp

D(G,wp)

)
q + 1

, (3)

where wp(G)
and q are the feature vector wp of a search-result Web page and the number

of search-result Web pages (q < n) in the cluster, respectively. When we merge clusters
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Algorithm: Semi-supervised clustering

Input: Set of search-result Web page pi(i = 1, 2, · · · , n), and seed pages psj
(j = 1, 2, · · · , u),

Wp = {p1, p2, · · · , pn, ps1 , ps2 , · · · , psu}.

Output: Clusters that contain the Web pages that refer to the same person.

Method:

1. Set each element in Wp as an initial cluster.

2. Repeat the following steps for all pi (i = 1, 2, · · · , n) in Wp

2.1 Compute the similarity between pi and psj
.

if the maximum similarity is obtained between pi and psj
,

then merge pi into psj
and recompute the centroid of the cluster using Equation (3),

else pi is stored as other clusters Oth, namely, Oth = {pi}.

3. Repeat the following steps for all ph (h = 1, 2, · · · , m, (m < n)) in Oth

until all of the similarities between two clusters are less than the predefined threshold.

3.1 Compute the similarity between ph and pr(r = h + 1, · · · , m)
if the maximum similarity is obtained between ph and pr ,

then merge ph and pr and recompute the centroid of the cluster using Equation (4),

else ph is an independent cluster.

3.2 Compute all of the similarities between two clusters.

Fig. 1. Our proposed semi-supervised clustering algorithm

that do not contain seed pages, we do not control the centroid of a cluster, and define
the centroid vector of the cluster as follows:

Gnew =

(∑q

wp(G)∈G
wp(G)

+ wp
)

q + 1
, (4)

Figure 1 shows the detailed algorithm of our proposed semi-supervised clustering
approach.

3 Experiments

3.1 Experimental Data

In our experiments, we used the WePS corpus established for Web People Search Task
[13]. The WePS corpus comprises 79 person sets, each of which corresponds to the
top 100 search results of Yahoo!2 via its search API for a person name query. In other
words, it contains approximately 7900 Web pages, and 49 and 30 personal names in the
training and test sets, respectively.

3.2 Evaluation Measure

We evaluate clustering accuracy based on the purity, inverse purity and their harmonic
mean F adopted in the Web People Search Task. Given a manual classification of the
documents into a set of labels, the precision of each cluster P with respect to a label

2 http://www.yahoo.com/
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Table 1. Clustering accuracy obtained using agglomerative and our proposed semi-supervised
clustering with one seed page

Clustering approach Type of seed page Purity Inverse purity F

Agglomerative clustering no seed page 0.66 0.49 0.51

Semi-supervised clustering

(i) Euclidean distance (a) Wikipedia article 0.39 0.90 0.54

(b) Top-ranked Web page 0.40 0.82 0.54

(ii) Mahalanobis distance (a) Wikipedia article 0.44 0.96 0.55

(b) Top-ranked Web page 0.47 0.81 0.60

(iii) Adaptive Mahalanobis distance (a) Wikipedia article 0.48 0.88 0.62

(b) Top-ranked Web page 0.50 0.78 0.61

partition L containing all documents assigned to the label, is the fraction of documents
in P which belong to L. The purity is then defined as the weighted average of the
maximum precision values of each cluster P , and the inverse purity is defined as the
weighted average of the maximum precision values of each partition L over the clusters.
Purity and inverse purity achieves maximum value of 1 when every cluster has one
single member and when there is only one single cluster, respectively.

3.3 Experimental Results

3.3.1 Experimental Results Using Full Text in the Documents
We compare clustering accuracy obtained using agglomerative and our proposed semi-
supervised clustering using full text in seed pages and search-result Web pages. In both
approaches, we first determine the optimal similarity for merging similar clusters using
the training set in the WePS corpus and then apply it to the test set in the corpus. This
similarity is set to 0.0065. Moreover, in our semi-supervised clustering approach, we
use the following two types of seed pages: (a) an article on each person in Wikipedia
[14] and (b) the top-ranked Web page in the Web search results. We first conducted
experiments using one seed page. However, every personal name in the test set of the
WePS corpus does not have a corresponding article in Wikipedia. Therefore, if a per-
sonal name has an article in Wikipedia, we used it as the seed page. Otherwise, we used
the top-ranked Web page in the Web search results as the seed page. We used Wikipedia
article as a seed page for 16 persons and the top-ranked Web page for 14 persons in the
test set of the WePS corpus. In a recent work that applies Wikipedia to personal name
disambiguation, Bunescu and Paşca [15] identify and disambiguate named entities by
using the structures of Wikipedia. Table 1 lists the clustering accuracies obtained using
agglomerative and our semi-supervised clustering approach with one seed page.

Moreover, with regard to the adaptive Mahalanobis distance where the best F is ob-
tained in the experiments using one seed page, we conduct further experiments by vary-
ing the number of seed pages. Figures 2 and 3 show the clustering accuracies obtained
using multiple Wikipedia articles, Web pages ranked up to the top 5, respectively.
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Fig. 2. Clustering accuracy
obtained using multiple seed
pages (5 Wikipedia articles)
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Fig. 3. Clustering accuracy
obtained using multiple seed
pages (Web pages ranked up
to the top 5)
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Fig. 4. Clustering accuracy ob-
tained varying the number of
words and sentences backward
and forward from a personal
name in a seed page and
a search-result Web page in
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3.3.2 Experimental Results Using Fragments in the Documents
We observed that the words that characterize the person often appear around a personal
name. Therefore, we vary the numbers of words and sentences backward and forward
from a personal name in the case where we used 5 Wikipedia articles as seed pages;
in other words, the best value of F (0.71) is obtained in our experiment. In this exper-
iment, using training set in the WePS corpus, we first search for the number of words
or sentences around a personal name in a seed page and a search-result Web page that
gives the best F . Figure 4 shows that the best F (0.76) is obtained when we use 2 and
3 sentences around a personal name in a seed page and a search-result Web page, re-
spectively. After applying these number of sentences around a personal name to the test
set of WePS corpus, we finally obtained the clustering accuracy, (purity:0.72, inverse
purity:0.81, F :0.76).

3.4 Discussion

In the agglomerative clustering approach, in Table 1, the high purity (0.66) with low in-
verse purity (0.49) indicates that the agglomerative clustering tends to generate clusters
that contain only one search-result Web pages.

In our proposed semi-supervised clustering approach, Table 1 shows that all the
approaches outperform agglomerative clustering with regard to the values of inverse
purity and F , although most of the purity values cannot outperform those obtained us-
ing agglomerative clustering. We consider that this is due to the effect of controlling
the fluctuation of the centroid of a cluster that contains a seed page. In our proposed
semi-supervised clustering approach, the best value of F (0.62) is obtained in the case
where we employ the adaptive Mahalanobis distance with an Wikipedia article as a seed
page. Moreover, in the semi-supervised clustering approach using multiple seed pages,
Figures 2 and 3 indicate that the values of both purity and inverse purity improve as the
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number of seed pages increases. This shows that introducing seed pages can guide the
clustering process more appropriately.

In the experiments using fragments in the documents, we found that we can dis-
ambiguate a personal name more effectively by using several sentences than words
around a personal name in a seed page and a search-result Web page in the training
set of the WePS corpus. This is because we could acquire useful information from
sentences that characterize an entity of a person. Moreover, the obtained clustering ac-
curacy (purity:0.72, inverse purity:0.81, F :0.76) is comparable to the top result (pu-
rity:0.72, inverse purity:0.88, F :0.78) among the participant systems in Web People
Search Task [13].

4 Conclusion

In this paper, we have proposed a semi-supervised clustering approach for disambiguat-
ing personal names in Web search results. Our approach is novel in that it realizes highly
accurate semi-supervised clustering by controlling the fluctuation of the centroid of a
cluster that contains a seed page. In our proposed semi-supervised clustering approach,
we introduced some distance measures to control the centroid fluctuation. Experimental
results show that our proposed approach achieved the best value of F (0.76) when we
simultaneously used 2 sentences backward and forward from an ambiguous name in a
seed page and 3 sentences backward and forward from an ambiguous name in a search-
result Web page. In future work, we plan to use Web pages hyperlinked from a target
page to disambiguate personal names in Web search results and extend our approach to
disambiguate place names.
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