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ABSTRACT 

 
The paper introduces new a researching method to study the mechanism and kinetics of the reactions 
in the polymerisation of ethylene by computer with the aids of GAUSSIAN 98 softwares. Calculation 
using density functional theory with the popular B3LYP at the 6-31g(d) was suitable for the research. 
Free radical ethyl and ethylene were good enough for modelling the propagation in the addition of 
polyethylene. The rate of propagation depending on temperature was an exponent function with the 
activative energy of 28 kJ/mole. The termination by chain tranfer using propanal was mainly the 
abstraction of hydrogen of carbonyl group.  The calculated percentage of product was around  85 % at  
220oC that was in good agreement with the experimental results. At 300oC, the efficient of termination 
by chain transfer of propanal was 90, 5% in comparison to 1,8 % of propane, 34,9 % of propene and 
49, 4% of butene-1. The mechanism and kinetics of back-bitting of polyethylene radical were 
investigated.  The branches of butyl and pentyl were obtained with the distribution of 4-5 branches per 
1000 C of polyethylene at 300oC. 
 
 
1. INTRODUCTION 
Computational chemistry has been known as 
an efficient method having a wide contribution 
in explaining and clarifying the reaction 
mechanism and predicting of the products of 
the reactions those are conducted in the 
extreme conditions (high pressure, temperature 
etc.)[3,5]. The polyethylene addition by the 
free radical chain reaction  has being interested 
by the chemists, technologists and 
manufaturers [6,16,17,18]. The current 
researches  focus in the technology to achieve 
high quality products with the required 
polymerization degree, average molecular 
weigh, and especially the lowest branching 
degree of the polyethylene[18]. One of these 
research directions is to search for the best 
chain transfer agent in the termination of the 
polyethylene addition, especially for light 
density polyethylene (LDPE). 

Low molecular weight compounds such as 
propane, butane, hexane, propene, 1-buten and 
1-hexene are used as chain transfer agents in 
the termination of polymerisation of 
ethylene[6]. However, the their transfer chain 
abilities are limited due to the dificulties in 
process control to give LDPE with required 
average degree of polymerisation (DP). In 
addition, the formed LDPE has  the high 
branching degree (BD). When using transfer 
chain agent, DP  depends greatly on the ratio 
of chain transfer rate constant/ propagation 
rate constant, thus controlling and selecting 
suitable temperature in termination by chain 
transfer agents lead to control requried DP  
[10,12,16,18]. 
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trDP  and DP   are the average degree of 
polymerisation with and without chain transfer 
agent, respectively.  
Ktr : chain transfer rate constant  
K p: propagation rate constant  
[S]:  concentration of chain transfer agent 
[M]: concentration of monomer. 
Recently, in 2000 the DSM company from 
Holand has been using propanal as a chain 
transfer agent in LDPE addition. The 
experimental results found that different from 
the other chain transfer agents, propanal 
reacted as efficient chain transfer agent when 
lowering temperature. In the other hand, the 
experimental results also gave that chain 
transfer reaction of propanal was 
predominantly hydrogen abstraction at 
carbonyl group (84%) ( Fig.1). 
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Fig.1. Proposal mechanism of chain transfer of 
propanal at 200oC and 2000 at. 
The research by computer is the best method 
to contribute in clarifying the mechanism and 
kinetics of chain transfer by propanal[4,5,15]. 
The other problem in polymerisation of 
ethylene is the branching which is unwanted 
and leads to lower the polymer quality. One of 
the proposal mechanisms of branching is back-
bitting in LDPE addition (Fig.2). 
 

 
 
 
 
 
 
  
 
 
Fig.2. Proposal mechanism of branching by 

ack-biting in LDPE polymerisation. 

nalysis of LDPE by 13C-NMR shows that 
utyl branches are present in the highes 
uantities, followed by ethyl short chain 
ranches. Butyl branches are formed via 6-
ebered rings (Fig.2). 
sing computational method, our objectives 

re aimed at: 
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ene, 1-

 

 
 
 
 
 
 
 

.2 Computational methods 
ll of the electronic structur calculations 
ere carried out using the program package 
AUSSIAN 98 [14]. Geometries, frequencies 

nd total energies of reactants, transition 
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veral level of theory with several basis sets 

s follows (ranking by more 
curacies):[13,19,22,23] 
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2. METHODOLOGY
2.1 Computatinal scheme 
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- CCSD(T)/6-31g*// B3LYP/6-31* 
- CCSD(T)/6-311++g** // B3LYP/6-31* 
- CCSD(T)/6-311++g** // CCSD(T)/6-

311++g** 
- CCSD(T)/6-31++g (3df,2p) // B3LYP/6-

31* 
 
3. RESULTS AND DIS
3.1 Selecting calculation method  

Investigation was carried out on
simplest model of radical methyl and 
formaldehyde (Table 1)[15,20,21]. 
Table 1.  Activative energy  (Ea) of chain transfer of radical 
methyl and formaldehyde by different calculation methods. 

 

 

N

01 B3LYP/6-31g* // B3LYP/6-31g* 21.267 
02 B3/6-311++g**// b3/6-311++g** 
03 

26.649 

 

MP2/6-311++g** // MP2/6-311++g** 57.315  
04 CCSD(T)/6-31g*// B3LYP/6-31* 53.860  
05 CCSD(T)/6-311++g** // B3LYP/6-31* 45.552 
06 CCSD(T)/6-311++g** // CCSD(T)/6- N/A 

311++g** 
07 CCSD(T)/6-31++g (3df,2p) // B3LYP/6-

31* 
N/A

N/A: undetermined because of  very long calculation time.  
 

T
exper

able 2. Rate reaction constant of radical methyl and ethane by 
iments and by calculation using B3LYP/6-31g*. 

K) ment 

Ktn 

K

 

T(o  K calculation K experi

[cm .mol .s ] 

Ktt 

[cm .mol .s ] 3 -1 -1 3 -1 -1

tt/Ktn 

350 1.07 x 10 4.64 x 10 2.31 5 4

400 9.68 x 10  5 3.06 x 10 5 3.16 

4.33 

750 4.75 
800 4.06 x 10 9 8.80 x 10 8 4.62 

450 5.56 x 10 6 1.45 x 10 6 3.84 
500 2.32 x 10 7 5.35 x 10 6

550 7.66 x 10 7 1.65 x 10 7 4.64 
600 2.12 x 10 8 4.41 x 10 7 4.81 
650 5.12 x 10 8 1.05 x 10 8 4.86 
700 1.11 x 10 9 2.29 x 10 8 4.84 

2.20 x 10 9 4.63 x 10 8

850 7.08 x 10 9 1.58 x 10 9 4.47 
900 1.17 x 10 10 2.72 x 10 9 4.31 
950 1.86 x 10 10 4.50 x 10 9 4.13 
1000 2.84 x 10 10 7.18 x 10 9 3.95 
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with experim data (Table 2)[1,2]
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.3, Table 3). Thus model of radical 
ethylene and ethylene is good enough for 
modelling the propagation in LDPE 
polymerisation. 
 
3.2 Mechanism and kinetics of propagation 
in LDPE polymerisation 
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Log Kp1 = - 0.1895 ( 10000/T) + 10.805 0.9972 

Log Kp2 = - 0.1852 ( 10000/T) + 11.288 0.9970 

Log Kp3 = - 0.1856 ( 10000/T) + 11.196 0.9970 

Log Kp4 = - 0.1858 ( 10000/T) + 11.137 0.9970 

Fig.3. Effect of length of carbon skeleton on 
propagation rate constants [cm3.mol-1.s-1]  
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Equation R2

Log K1 = - 0.1891 ( 10000/T) + 12.009 0.9962 

Log K2 = - 0.2156 ( 10000/T) + 11.401 0.9971 

Log K3 = - 0.3678 ( 10000/T) + 11.643 0.999 

Log Kadd = - 0.1960 ( 10000/T) + 9.6875 0.9977 

 
Fig.4. Effect of temperature on chain transfer rates 
constants [cm3.mol-1.s-1] of propanal. 
K1,K2, and K3 : chain transfer constants of hydrogen abstraction 
at C1, C2, and C3 respectively 
Kadd: chain transfer constant of addition to carbonyl group. 
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3.4 Mechanism and kinetics of branching by 
back-bitting  
Using 1-octyl representing for LDPE radical 
for reseaching mechanism and kinetics of 
branching by back-bitting. 
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raching ratio for 1000 CH2 units by back-
bitting is caculated by the formula: 

rbb: branching ratio by back-bitting. 
rb: back-bitting rate 
rp: propagation rate ( equivalent to Kadd) 
[M]: concentration of monomer ( usually taken 
as 1 unit]. 

able 5: Effect of temperature on the formation of 
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Fig.6. Effect of temperature on branching by 
back-bitting in
 
Back-bitting of 1-octyl radical occurred most 
easily at positions d and 
c
other positions. Thus LDPE radical will be 
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T
butyl  and pentyl branches per 1000 units of CH2 
group by branching by back-bitting  in LDPE 
polymerization.  
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