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ABSTRACT 

  
The paper presents some new ideas to improve the accuracy and the generality of the driver 

trajectory model used in the path-planning module of the NAICC (Navigation Aided Intelligent Cruise 
Control) system. First, a new Sugeno fuzzy model is developed to calculate the characteristic points, 
which are dependent on the driver and the road profile, needed to compute the coefficients of a polar 
polynomial modeling the driver trajectory. The parameters of the membership functions used to 
represent linguistic variables in Sugeno fuzzy model are estimated by using a Levenberg – Marquardt 
algorithm so that the mean square error between the observed data and the fuzzy model output is 
minimized. Second, the effect of the slope and curvature constraints on the shape of the polar 
polynomial and the driver trajectory are discussed and some nice expressions for estimating these 
constraints are proposed. Simulation on a wide range of bends with different radii and turn angles 
shows on the one hand that the obtained fuzzy model is able to calculate the appropriate characteristic 
points corresponding to the driver profile, and on the other hand that the estimation of the slope and 
curvature conditions is good enough. An experimental validation with some available test bends shows 
that the path, planned by using the new trajectory model, fits very well to the real driver trajectory.  
 
 
1. INTRODUCTION 
 
The concept of driver-aid system has been of 
interest recently because of the need of 
increasing driver’s safety and comfort on the 
road. Many related projects are currently in 
progress; one of them is the NAICC (Navigation 
Aided Intelligent Cruise Control) project. The 
NAICC system uses a driver’s trajectory model 
to generate reference paths corresponding to 
different kinds of drivers and to the road profile. 
In its “Warning Mode”, the NAICC system will 
warn the driver if there is a significant 
difference between the planned path and the real 
vehicle trajectory. In its “Vehicle Control 
Mode”, the NAICC system controls the vehicle 
in order to follow the computed reference path. 
A basic solution in the determination of the 
reference path could be to use sequences of line 
segments and circular-arc segments. However, 
an attempt to follow such paths results in 
discontinuities in the steering functions at each 
junction between the straight line (of zero 

curvature) and the circular arc (of constant 
curvature equal to the inverse of the arc radius). 
Taking into account the kinetics constraint of 
practical vehicles, the curvature of the planned 
path must be continuous because the steering 
angle cannot be changed suddenly in practice. 
To ensure the continuous curvature requirement, 
the polar polynomial is chosen to model the 
driver trajectory ([1]). The idea is inspired by 
previous works ([2], [3]), in which polar 
polynomial is used to generate continuous 
curvature paths for autonomous car-like robots. 
In this research, an improvement of the driver’s 
trajectory model discussed in [1] is presented.  
   

The rest of the paper is organized as follows. 
Section 2 briefly reviews the driver’s trajectory 
modeling principle discussed in the previous 
work [1]. Section 3 presents the new ideas 
improving the accuracy and generality of the 
driver’s trajectory model. Section 4 shows the 
experimental and simulated results validating 
the new ideas.  Section 5 is the conclusion. 



 

2. DRIVER’S TRAJECTORY MODELING 
 

In the previous work [1], the authors 
considered the problem of modeling the 
trajectory of well-defined classes of drivers, 
namely the novice drivers (ND) and the very 
experienced drivers (VED). The behaviours of 
different kinds of drivers during bend 
negotiation are not the same; consequently, their 
driving trajectories are quite different. In this 
work, we only concentrate on the problem of 
modeling the ND’s trajectory, but it is worth to 
note that the results can straightforwardly be 
applied to the class of VEDs. 
 
During bend negotiation, the ND gradually turns 
the steering wheel, increasing the steering angle 
to a maximum, and then gradually turns it to the 
initial position, decreasing the steering angle. 
This driving technique leads to a progressive 
and smooth trajectory as shown in figure 1. The 
feature is that the instantaneous radius of the 
ND’s trajectory in the polar co-ordinate frame 
has a parabolic shape as illustrated in figure 2. 
This shape is completely different from that of 
the VED (see [1] for more details). 

 

                 
Fig 1: Measured trajectory of the novice driver 
  

        
Fig 2: Instantaneous radius of the novice driver’s 

trajectory in the polar co-ordinate frame 

Among several types of continuous curvature 
curves, the polar polynomial is used for modeling 
the driver’s trajectory because it has a closed-
form expression. This is particularly convenient 
in real-time path-planning applications. This 
idea of trajectory modeling is inspired from the 
path-planning technique for autonomous guided 
vehicles in robotics ([2], [3]). The general 
expression of the polar polynomial is given by: 

∑
=

=
n

i

i
iar

0
)( φφ   (1) 

The instantaneous curvature of the trajectory 
generated by (1) is: 
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The order of the polar polynomial is dependent 
on the number of constraints that must be 
satisfied. To generate the specific ND’ trajectory 
described above, the polar polynomial must 
satisfy the following boundary conditions: 

at 0=φ  ⇒ 1Rr = ,  1rr ′=′ , 1kk =  
at Cφφ =  ⇒ CRr = , Crr ′=′  
at αφ =  ⇒ 2Rr = ,  2rr ′=′ , 2kk =  (3) 

The position constraints R1, RC, R2 are the radii 
of the ND’s trajectory at the beginning, the 
vertex and the end of the bend, respectively. 
These positions are called the characteristic 
points of the trajectory because those of 
different kinds of drivers are very different. The 
slope constraints 1r′ , Cr′ , 2r′  are the derivatives 
of the polar polynomial at the mentioned points. 
The curvature constraints k1, k2 are the 
curvatures of the trajectory at the beginning and 
the end of the bend. Because there are eight 
constraints to be satisfied, the polar polynomial 
modeling the ND’s trajectory must be of 
seventh-order. To calculate the coefficients of 
the polar polynomial, R1, RC, R2, 1r′ , Cr′ , 2r′ , k1, 
k2 must be computed first. In the paper [1], the 
constraints are determined as follows. 
 
 1. The characteristic points are calculated by 
using the following equations: 

∑∑∑∑
= ===

+++=
2

1

2

1

4

1

4

1
0

i j

ji
ij

i

i
i

i

i
iC RABRAAR αα  (4) 



 

ARR C +=1                                         (5) 
BRR C +=2                                   (6) 

Where R is the outer radius of the bend and α is 
the turn angle. The parameters of equation (4) 
are estimated using a least square algorithm. The 
quantities A and B in the equations (5) and (6) 
are calculated by using a Mamdani fuzzy 
inference system (FIS), which is manually 
optimized based on expert knowledge. 
 
There are two recognized limitations of the above 
expressions. First, the computation of R1 and R2 
depends on RC  according to the equations (5) and 
(6). So if there are any errors in calculating RC, 
the errors will be propagated to R1 and R2. 
Second, the optimization of the FIS hardly 
depends on the expert knowledge accumulated. 
Thus, considering the diversity of existing driving 
situations, the globalization of the path-planner to 
a wide range of  situations is then difficult. In 
fact, the FIS has been developed based on real 
experiments performed on the test track presented 
in figure 3. Applied to significantly different 
situations, the FIS generates estimation errors 
sometimes in the range of a meter, which is not 
acceptable for a control application. 

 
Figure 3: The test track 

 
 2. The slope and curvature constraints play a 
very important role in determining the driver’s 
trajectory. Over-estimating or under-estimating 
these values will distort the parabolic shape of 
the polar polynomial modeling the ND’s 
trajectory. This can lead on the one hand to a 
planned path which will not be appropriate to 
represent the driver’s behaviour and on the other 
hand to a trajectory that may go outside the 
road, and this is of course a dangerous and 
unexpected situation. In the paper [1], the 
authors stated that the slope and curvature 
conditions are dependent on the kinds of drivers 
and the road profile. Considering the bends in 
the test track (figure 3), the slope constraints are 
approximated by linear relationships with the 
bend radius R and the curvature conditions are 
approximated by constants. These simple 

expressions cannot be used to determine the 
slope and curvature constraints in general cases. 
Because of the mentioned drawbacks, the 
trajectory model obtained in the previous work 
can only predict suitable reference paths in some 
limited road profile configurations. In other 
words, the model is not general enough. The 
purpose of this research is thus to obtain a more 
general and accurate driver’s trajectory model 
by reconsidering the way of calculating the 
characteristic points, the slope and the curvature 
conditions. Section 3 presents the new solutions 
to the mentioned problems. 
 
 
3.  IMPROVING THE DRIVER’S 

TRAJECTORY MODEL   
 
3.1 Identification of the characteristic points 
 
In this work, the characteristic points R1, R2, RC 
are calculated independently from each other by 
using the following equation: 

xx ARR += min     ( Cx ,2,1= )  (7) 

where Rmin is the inside radius of the bend stored 
in the database containing the road profile 
information. This principle has been adopted in 
order to avoid that the error on the determination 
of one parameter has an impact on the 
determination of the other ones as it was the 
case in the previous solution.  
According to equation (7), the identification of 
the characteristic points Rx first requires the 
determination of the quantities Ax ( Cx ,2,1= ). 
For this task, it is reasonable to use a FIS to 
model Ax. Effectively, by investigating the 
trajectories recorded from real experiments, we 
can easily recognize that the quantities are 
nonlinearly dependent on the radius and the 
angle of the turn. The membership functions of 
the FIS are identified from observed data by 
using a nonlinear least square algorithm. 
 
Structure of the Sugeno FIS                          
 
Now consider the problem of modeling Ax. A 
Sugeno FIS ([4]) is used to describe the 
relationship between Ax, the turn radius R and 
the turn angle α. The reason for this choice is 
that a Sugeno FIS is more flexible and more 
suitable for numerical training than a Mamdani 



 

one. In addition, the defuzzification methods 
used with a Sugeno FIS do not need any time-
consuming integral calculation and is thus more 
appropriate to real-time application.  
 
By investigating the recorded trajectories from 
real experiments, it appears that the non-
linearities between Ax and the turn angle α are 
more important than the one between Ax and the 
bend radius R. As a result, more linguistic 
values should be defined for the variable α. 
Figure 4 presents the membership functions of 
the fuzzy sets representing the radius R and the 
turn angle α. Note that positions of the 
membership functions are dependent on some 
changeable parameters, namely bi (i=1...5). In 
this work, piece-wise membership functions are 
used because of their simplicity, but of course, 
other types of membership functions could be 
used instead. 

 
Figure 4: Membership functions of the variables 

radius and angle 
 
The Sugeno fuzzy rules are of the following 
general form: 

If Radius is R
iL  and Angle is α

iL  then  Ax = ai  (8) 

where R
iL  and α

iL  are linguistic values (e.g. 
SMALL, MEDIUM, LARGE… as defined in 
figure 4) of the variables R and α respectively, 
used in the antecedent of the ith rule1. Using the 
product operator to implement the fuzzy 
conjunction and implication, the weighted 
average method for defuzzification, and finally 
noting that the fuzzy sets representing the 

                                                 
1 i=1...20 because the rule base contains all possible combinations 
of the linguistic values defined for each variable. 

linguistic values of the variables are fuzzy 
partitions, the FIS output expression is [5]: 
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where ),( bRiµ  and ),( bαµi  are the 
membership functions of fuzzy sets representing 
the linguistic values R

iL  and α
iL  of the bend 

radius and the turn angle, respectively, in the 
antecedent of the ith fuzzy rule; b=[b1,…,b5]T is 
the vector of parameters of the membership 
functions of the fuzzy sets in the antecedent, 
P=[a1,…, a20, b1,…,b5]T∈ℜ25 is the parameter 
vector to be estimated from the observed data. 
 
Estimating the membership functions 

Let )(* kAx  be the kth element of N observations 
from real experiments defined by the relation: 

min
** )()( RkRkA xx −=  (10) 

The error between the observed value )(* kAx  
and the estimated value Ax(k) using the FIS is: 

)),(),(()()( * PkkRAkAke xx α−=  (11) 

The estimation criterion is defined by: 
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The estimation step consists in the determination 
of the parameter vector P so that J(R,α,P) is 
minimized. Typically, a Newton type iterative 
algorithm ([6]) is used to solve the above 
optimization problem: 

[ ] )ˆ,,()ˆ,,(ˆˆ )(1)()()1( jjjj RJRJ PPPP αα ′′′−=
−+  (13) 

Among the different versions of Newton type 
algorithms, the Levenberg–Marquardt (LM) 
algorithm seems to be a reasonable choice 
because of its fast-convergence and robustness 
properties. The drawback of an LM algorithm is 
that it can easily fall into local minimum. One 
solution to the mentioned problem could be to 
run the algorithm several times with different 
parameter initialisation values and to stop when 
a satisfying result is obtained. Another solution 
is to use a global search algorithm, e.g. genetic 
algorithm, but it is beside the scope of this work. 
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3.2 Identification of the slope and curvature 
constraints  
 
Slope constraints 

 
To derive reasonable expressions for estimating 
the slope constraints, let have a look at the 
graphical presentation of the slope of the ND’s 
polar polynomial at the characteristic points 
(figure 5): 

 
Figure 5: Slope constraints 

 
In the plot, the following relationship can easily 
be noticed: 

1111 /)()tan( γβ CRRr −−=−=′  (14) 

2222 /)()tan( γβ CRRr −==′  (15) 

where γ1 and γ2 are directly defined in the figure. 
The values of γ1 and γ2 are not exactly defined 
but it is clear that γ1 and γ2 are respectively 
proportional to the angle φC and (α−φC), where 
φC is the angle of the vertex of the turn. Based 
on this analysis and with the assumption that the 
characteristic points R1, R2 and RC  are correctly 
estimated, expressions for the slope constraints 
are proposed as following: 

)/()( 111 CC cRRr φ−−=′  (16) 
)](/[)( 222 CC cRRr φα −−=′  (17) 

The two constants c1  and  c2 are in a first time 
arbitrary selected. A suggestion of these 
constants is c1 = c2 = 0.01. 

Curvature constraints 

In this work, an approximation derived from the 
expression (2) is used to evaluate the curvature 
constraints. The exact curvature expression (2) 
cannot be used directly because it requires the 
first and second derivative of the polar 

polynomial, which are only available once the 
coefficients of the polar polynomial are 
determined.  
 
Considering practical situations, to gain 
comfort, the ND gradually turns the steering 
wheel during bend negotiation. This behaviour 
leads to small variations of the first and second 
derivatives of the polar polynomial. These terms 
can thus be eliminated from expression (2). As a 
result, the following approximated expression of 
the instantaneous curvature is obtained: 

rk /1≈  (18) 

Evaluating the above expression at the 
beginning and the end of the bend, we have the 
following curvature constraints: 

11 /1 Rk =  (19) 

22 /1 Rk =  (20) 

Remark: The slope and curvature constraints 
depend on the characteristic points, while the 
characteristic points are determined based on the 
driver profile and the road profile by using a 
FIS. Consequently, the slope and curvature 
constraints are indeed dependent on the driver 
and the road profile. So the proposed 
expressions agree with the basic idea about the 
slope and curvature constraint stated in [1].  
 
 
4. RESULTS 
 
The proposed improvements discussed above 
are applied to model the ND’s trajectory. First, 
the Sugeno FIS used for calculating the ND’s 
trajectory characteristic points are identified 
from experimental data by using a Levenberg – 
Marquardt optimization algorithm. Data samples 
used in the estimation and validation steps are 
collected from real experiments in various bends 
with different radii and turn angles. Due to the 
lack of space, the identified Sugeno FIS are not 
shown in detail here. Table 1 only presents a 
comparison of the mean square errors obtained 
on the characteristic points calculated on the one 
hand with the solution presented in [1], and on 
the other hand with the one presented in the 
current work. It is clear that the new algorithm 
computes the characteristic points more 
accurately than the earlier one. 
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Table 1: Mean square error in calculating the  
   characteristic points 

Mean square error (m2)  
R1 R2 RC 

New result 0.127 0.184 0.155 
Earlier result 3.610 2.852 1.005 

 

 
Figure 6: Validation of the driver trajectory with 
real experiments  

        
Figure 7: The planned driver trajectory for a 
simulation bend (R = 80m, α =100°) 
 
Once the characteristic points are estimated, 
they are used to compute the slope and curvature 
constraints. Then these constraints in 
combination with the characteristic points are 
used to determine the coefficients of the polar 
polynomial (1) modeling the ND’s trajectory. 
The validation phase shows that the obtained 
driver trajectory model is not only suitable to the 
bends in real experiments but also to a wide 
range of simulation bends with different radii 
and turn angles. In figure 6, the trajectory 
calculated by using the driver model is almost 
the same as the one measured during real 
experiments. Figure 7 shows the planned 
trajectory for a simulation bend that is 
significantly different from the ones used in the 
identification step. From this illustration, it is 
clear that the planned-path is quite reasonable. 

5. CONCLUSION 
 
In this work, new algorithms to calculate the 
characteristic points and the slope and curvature 
constraints are proposed to improve the 
accuracy and generality of a driver trajectory 
model. The characteristic points are calculated 
independently from each other with the help of 
Sugeno Fuzzy Inference Systems. These 
systems are identified from experimental data by 
using a Levenberg – Marquardt optimization 
algorithm. The slope and curvature constraints 
are approximated by some simple explicit 
expressions in order to be easily computed in 
real-time path-planning algorithms. In spite of 
their simplicity, the proposed constrained 
conditions are well-suited for the determination 
of the parabolic shape of the instantaneous 
radius – angle characteristic of the ND’s 
trajectory. The obtained results can be 
straightforward applied to other kind of drivers. 
Validations on simulated and experimental data 
show that the trajectory models are accurate and 
general enough to be used in the path planning 
module of autonomous driving systems.   
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