
 1

FPGA-BASED ARCHITECTURE OF MP3 DECODING 
CORE FOR MULTIMEDIA SYSTEMS 

 
Thuong Le-Tien, Vu Cao-Tuan, Chien Hoang-Dinh 

Hochiminh City University of Technology 
268 Ly Thuong Kiet, Dist 10, Hochiminh City, Vietnam 

NT: +84-8-8654600; Fax: +84-8-8645922 
Emails: ThuongLe@hcmut.edu.vn, CaoTuanVudh@yahoo.com 

 
 

ABSTRACT 
 

A multimedia system links images and audio to distribute and transmit information to users. These 
images and audio data have to be compressed for raising capacity of storing and processing tasks in 
real time, and allowing the content of signals to be suitable for the band-width of processing systems. 
For each terminal, softwares are the most common tools to read the compressed data, but in recent 
years portable devices such as mobile phones, mp3 players, etc… have gained in popularity, therefore 
designing of decompressing cores used in the handheld devices are the necessary demand for 
professional ASIC designers. 
 
This paper introduces the proposed architecture of an mp3 decoding core. The core are partitioned into 
subcores named Huffman, Requantizer, Reorder, Antialias, IMDCT, Filterbank, Interface and 
Controller, in which each subcore can individually be designed, coded, and tested easily. The core is 
firstly described as a functional specification in VHDL, and is synthesized, compiled and simulated on 
Xilinx ISE 7.1i software. Finally, it is implemented on the hardware of FPGA Virtex-II Pro-board of 
Xilinx Company.  The results are met the standard requirement from both simulations and hardware 
implementation. 
 
Keywords:  MP3, Huffman decoding, Filterbank, VHDL, Multimedia, Xilinx ISE 7.1i. 
 

1. OVERVIEW OF MP3 DECODING 
 
MP3 (MPEG 1 layer 3)  is a standard [4] for 
compressing digital audio was being developed 
from 1988 to 1992 by MPEG (Moving Picture 
Experts Group )- this standard makes use of 
“Sub-band Synthesis” for transforming audio 
signal in Multimedia systems. The decoding 
process is shown in figure 1. 

Fig 1.  The mp3 decoding process  [4] 
 
Each block of the process can be funtionalized as 
following in details. 
 
1.1 Synchronizer 
Before decoding, the start of the frame must be 
found. If the frame is interrupted, we can not  

find the exact position of the next frame. The 
structure of a frame is shown in figure 2. The 
header contains enough information to calculate 
the size of the frame, which is also the start of 
the next frame, using the bit rate and frequency 
fields.  

Fig 2.  The mp3 bitstreams format [4] 
 

1.2 Huffman decoding 
The decoding procedure is based on several 
Huffman tables (32 Huffman tables for MP3) 
that are used for mapping Huffman codes to 
symbols. The mapping of symbols to Huffman 
codes is based on the statistic contents of the 
input sequence. Symbols that occur more 
frequently are coded with a short code, while 
symbols that occur less frequently are coded with 
longer codes. 

synchronizer 
 Huffman 
Decoding 

Requantizer 

Stereo 
decoding 

reorder 

PCM 

Coded 
bitstream 

Antialias  IMDCT 
  

Syntthesis 
Filterbank 

Header    CRC    side information   Main Data    Ancillary Data

32 bit 16 bit 136 bits in single channel 
256 bits in dual channel 



 2

The output of the Huffman decoder is 576 scaled 
frequency lines for each granule; they are 
partitioned into three parts as illustrated in figure 
3: Big-values, count1 and rzero. 
Big-values represent the lowest frequency lines 
and are coded with the highest fidelity with the 
value ranging from -15 to 15. To decode the 
higher values, some code tables use the value 15 
as an escape code and read additional bits from 
the input stream. This value is then added to the 
escape code. Numbers of bits is specified in the 
Huffman table and are called linbits. 
Count1 represents the higher frequency lines and 
contains small values ranging from -1 to 1,  
Rzero represents the highest frequencies and is 
not a part of the bitstream. Instead, rzero 
represents the frequency lines that have been 
removed by the encoder, and it should be filled 
with zeros by the decoder. 

Fig 3.  The 3 parts of frequency lines  [3] 
 
The boundaries of the parts are specified in the 
side information, and are selected by the psycho 
acoustic model during the encoding process. 
When decoding big-values region, the Huffman 
tables create two frequency lines and four 
frequency lines for decoding count1. 
 
1.3 Requantizer 
The symbols from the Huffman decoder can be 
reconstructed into the original frequency lines by 
using the scalefactors in the side information of 
the frame. The frequency lines are divided into 
21 groups, called scalefactor bands, each using 
its own scalefactor. A low frequency scalefactor 
band contains fewer values than a scalefactor 
band representing higher frequencies. 
The complete descaling equations for both short 
and long blocks are shown in eq. (1) and (2). 
What equations to use depend on the windowing 
function used in the encoder. The Huffman 
decoded value at index i is is(i), the output from 
the Requantizer block at index i is xr(i). 

• For short blocks: 

xri = sign(isi).
)210][_(

4
1

3
4

2.
−grgainglobal

iis . 

2-scalefac_multiplier.scalefac_s[gr][ch][sfb][window]. 
2-2.subblock_gain[window][gr]                        (1) 
• For long blocks: 

xri = sign(isi) . 
)210][_(

4
1

3
4

2.
−grgainglobal

iis  .  
2-scalefac_multiplier.scalefac_l[gr][ch][sfb]. 
2-preflag[gr].pretab[sfb]             (2) 
with scalefac_s and scalefac_l are the 

scalefactors that supplied by Huffman decoder. 
Global_gain, subblock_gain and preflag are 
parameters that found in the information of the 
frames. 
1.4 Reorder 
During encoding process, the MDCT can arrange 
the output values in two different ways 
depending on the side information header (Only 
support for MP3 streams with 44.1 kHz sample 
frequency is implemented.). Normally the output 
from the MDCT is sorted by subbands in 
increasing frequency. When a short block is 
decoded, a short window will be used. The 
output will in this case be sorted on subbands, 
then on windows and then on increasing 
frequency.  In order to increase the efficiency of 
the Huffman coding the frequency lines for the 
short windows case were reordered into 
subbands first, then frequency and at last by 
window.  An example for reordering process is 
shown in figure 4 

Fig 4.     The reordering process [10] 
 

1.5 Antialias 
It is the attempts for reducing the inevitable alias 
effects because of using a non-ideal bandpass 
filtering in the subband synthesis block of 
encoder.  The alias reconstruction calculation 
consists of eight butterfly calculations for each 
subband, as illustrated in Figure 5. The constants 
in the figure are in the specified standard [3].  

2*bigvalues + 4*count1 

2*bigvalues 

 Big-values        Count1           rzero

576 scaled frequency lines 

... 

... 

Subband 0 Subband 1 Subband 31 

Subband 0 Subband 1 Subband 31 

W
in

do
w

 0
 

W
in

do
w

 2
 

W
in

do
w

 1
 

(the darker color represents the higher frequency) 



 3

 
Fig 5.  Alias reduction butterflies  [3] 

 
1.6 Inverse Modified Discrete Cosine 

Transform (IMDCT) 
The IMDC will output 18 time domain samples 
for each of the 32 subbands: 

xi= )]1k2](
2
n1i2[

n2
cos[X

1
2
n

0k
k +++∑

−

=

π
   (3) 

1-ni0 ≤≤  
 

 
Fig 6.  The IMDCT operation flow [10] 

 
The IMDCT operation flow is shown in figure 6. 
The IMDCT block is an 18-point DCT that 
produces 36 output values from 18 input values. 
These samples are multiplied with a 36-point 

window before it can be used by the next step in 
the decoding process. The window to use is 
based on the block type (there are four block 
types that used, they are: short, start, stop, 
normal), that can be found in the side 
information.  Producing 36 samples from 18 
frequency lines means that only 18 of the 
samples are unique. So, the IMDCT use a 50% 
overlap. The 36 values from the windowing are 
divided into two groups, a low group and a high 
group, containing 18 values each. Overlapping is 
performed by adding values from the lower 
group with corresponding values from the higher 
group from the previous frame.  
 
1.7 Synthesis polyphase filterbank 
Synthesis polyphase filterbank (subband 
synthesis) is the last step of the decoding process. 
It converts 32 subbands to produce 32 PCM 

X 0 

X 17 
X 18 

X 35 

. . . 

. . . 

X 
540 

X 557 
X 558 

X 575 

. . . . 

. . . 

. . . 

18

18

18

18

 (1) (2) 

. . . . 
(0) (1) (2) 

. . . .
(0) (1) (2) 

:  
: 

X 36 
:  
: 

. . . .(0) (1) (2) 
X 539 

shifting 
for i=1023 down to 64 do 

V[i]=V[i-64]   

 

Bulding a 512-value vector U 
for i=0 to 7 do  

    for j=0 to 31 do 
          U[i*64+j]=V[i*128+j]  
          U[i*64+32+j]=V[i*128+96+j]  
 

32 input subband samples 
Si     i=0…..31 

BEGIN 

Matrixing 

for i=0 to 63 do Vi=∑
=

31

0
*

k
kik SN  

Windowing by 512 coefficients 
Create vector W 

for i=0 to 511 do  Wi = Ui * Di 

Calculating 32â samples 

for j=0 to 31 do Sj=∑
=

+

15

0
32

i
ijW  

32 output reconstructed PCM 
samples 

END

Fig 7.  Synthesis subband filter flow chart 

  18 lower values         18 higher values

  18 input values 

IMDCT

36 output values 

+ 

    Delay

18 values   
previous frame. 

Frequency inversion 

Block type 

short 

normal 

start 
stop Windowing 



 4

samples at a time using the input samples from 
the filter bank (figure 7). 
In the synthesis process, the 32 subband values 
are transformed to the 64- value V vector using 
matrixing. The V vector is pushed into a FIFO 
which stores the last 16 V vectors. A U vector is 
created from the 32 component blocks in the 
FIFO and a window function D is applied to U to 
produce the W vector. The reconstructed PCM 
samples are obtained from the W vector by 
decomposing it into 16 vectors each 32 values in 
size and summing these vectors. 
 
2. OVERVIEW OF CORE DESIGN 

PROCESS 

Fig 8.      The Core design process [2] 
 
Core is a predesigned, preverified silicon circuit 
block, usually containing at least 5.000 gates, 
which can be used in building a larger or more 

complex application on a semiconductor chip.  In 
SoC (system on a chip) design, the use of cores 
(design-reuse) is very important because of the 
incessantly increasing of the system’s 
complexity. Figure 8 shows a standard core 
design process [2], including the major steps as 
follows, 
• Specification and partitioning – The first 

important thing is the initial core 
specification must be understood completely. 
Then the design is partitioned into subcores. 

• Sub core specification and design – Once 
the partitioning is complete, the designer 
develops a functional specification for the 
subcore, emphasizing the timing and 
functionality of the interfaces to other 
subcores.  

• Testbench development – refining the 
behavioral testbench into a testbench that can 
be used for RTL (register transfer level) 
testing of the entire core. 

• Timing checks – checking the timing 
budgets of sub cores to ensure that they are 
consistence and achievable. 

• Integration – Integrating the subcores into 
the core includes generating the top-level 
netlist and using it to perform functional test 
and synthesis.  

 
3. ARCHITECTURE OF THE  CORE 

 

Fig 9. Mp3 decoding Core 
 
The proposed CORE is described as a functional 
specification in VHDL - the most popular 
hardware description language.  After that, this 
core is implemented on the FPGA hardware of 
Virtex-II Pro  XC2VP30-FF896 of Xilinx 
Company. The FPGA features 30816 logic slices 
and 136 pairs of one 18x18-bit multiplier and 
136 BSRs (Block Select RAM) and up to 644 IO 
(input/output) signals. 

CORE 
SPECIFICATION 

DEVELOP functional specification

DEVELOP 
behavioral model  

PARTITION  
Design into subcores 

WRITE functional specification

DEVELOP 
Testbench  

TEST behavioral model 

CREAT BEHAVIORAL MODEL

WRITE technical specification

DEVELOP  
timing constraints 

WRITE 
RTL 

DEVELOP
testbench 

SIMULATE
Verilog/VHDL 

SYNTHESIZE 

PERFORM 
power analysis 

MEASURE 
testbench coverage 

PASSES – READY FOR 
INTERGRATION 

BirResevoir.vhd 

Huffman.vhd Requantizer.vhd Reorder.vhd Mainmem.vhd

Controller.vhd Antialias.vhd IMDCT.vhd Filterbank.vhd Giaotiep.vhd

Scale factor 

si_data 
si_valid 
si_req 

so_data 
so_valid 
so_req 

Synchronizer.vhd 



 5

The flow chart of the core design process was 
shown in figure 8 and the specification of the 
core is also discussed in part II.  The diagram 
block of mp3 decoding core is illustrated in 
figure 9. The core is divided into the following 
subcores: 
 
3.1 Synchronizer Subcore 
The Synchronizer subcore (synchronizer.vhd) 
reads input data and implements the 
synchronization. The result of synchronizing is 
stored in a memory (bitreservoir.vhd).  

 
Fig. 10  The state machine of Synchronizer subcore 

 
This subcore was designed on state machine that 
is shown in figure 10 with the following states: 
FIND_SYNC: the state that finds the 
synchronous word including a bit pattern of 12 
consecutive ones. 
HEADER: the state that specifies the start of a 
frame. 
VALIDATE: the state that determines the 
validation of an mp3 frame. If id, layer, bitrate, 
frequency is reserved then the found bitstream is 
not mp3 frame and the next state is RESTART. 
SIDE_INFO: the state that confirms the side 
information of frame 
MAIN_DATA: the state that confirms the main 
data of a frame. 
DECODE: the state that confirms the completion 
of the frame definition. 
RESTART: the state that restarts a new frame. 
 
3.2 Huffman decoding Subcore 
The main task of Huffman decoding subcore 
(huffman.vhd) is to transform compressed data 
into scalefactors and symbols representing the 
576 original frequency lines.  The scalefactors 
are then used in Requantizer subcore. The output 
values from Huffman subcore are put in a 
memory (mainmem.vhd) with the size of 576 

words.  All Huffman tables are stored in BSRs of 
Virtex-II Pro (the actual number of tables stored 
is 17, tables number 16 to 23 are the same and so 
are tables number 24 to 31). 

 
 

 
Fig. 11   The state machine diagram  of Huffman 

 
The Huffman subcore was designed on state 
machine that is shown in figure 11 with the 
following states: 
IDLE: the state that does nothing, waiting for 
start. 
CONT1: the state that checks the type of window 
and appoints to the next state. 
CONT2: the state that assigns the next states: the 
sate using mixed window and the state using 
short window. 
CALC_SF1: the state that calculates the 
scalefactors using mixed window. 
CALC_SF2: the state that calculates the 
scalefactors using short window. 

FIND_SYNC 

HEADER

VALIDATE

CRC 
MAIN_DATA 

SIDE_INFO 

DECODE 

RESTART 
Id,  

birate,  layer,  
frequency  =reserved  

IDLE

CONT
1

CONT2
CALC_SF1

CALC_SF2 

CALC_SF
4

CALC_SF5 

CALC_SF6

CALC_SF7

DONE_SF

INIT_DEC

DEC_BV

HUFFMAN_
LOOP 

INIT_LOOP
_ 

LINBITS
DO_LINBITS

_X 

DO_LINBITS
_SIGN_X 

DO_LINBITS
_Y 

DO_LINBITS
_SIGN_Y 

DEC_RC1

HUFFMA
N_LOOP2 DONE_ 

HLOOP2 

SIGN_V

SIGN_W 

SIGN_X 

SIGN_Y

FILL_
ZEROS 

READY



 6

CALC_SF4, CALC_SF5, CALC_SF6, 
CALC_SF7, DONE_SF: the states that calculate 
the scalefactors using long window, these states 
use the sfsi (Scale factor Selection Information) 
to determine weather the same scalefactors are 
transferred for both granules or not. 
INIT_DEC: After all of scalefactors are 
calculated, they are divided into three parts. This 
state is the state that starts the decoding and 
assigns the first decoding state.  
DEC_BV: the sate that decodes big-values 
region, it decides what Huffman tables are used. 
HUFFMAN_LOOP: this state performs the 
decoding for  big-values region and determine 
weather the linbits are used or not. 
INIT_LOOP_LINBITS: the state that implements 
the adding the linbits to the pairs of (x, y) value 
if they are escape codes. 
DO_LINBITS_X, DO_LINBITS_SIGN_X: two 
state that implement the adding the linbits to 
value x (x is an escape code). 
DO_LINBITS_Y, DO_LINBITS_SIGN_Y: two 
state that implement the adding the linbits to 
value y (y is an escape code). 
DEC_RC1, HUFFMAN_LOOP2, 
DONE_HLOOP2: The states represent the 
decoding process for coun1 region. As a result, 
produce the values in four frequency lines for 
each input stream. 
SIGN_V, SIGN_W, SIGN_X, SIGN_Y: four states 
are corresponding to calculating four frequency 
lines for each input stream when decoding in the 
count1 region. 
FILL_ZEROS: the state that represents the last 
region of 576 output values, they are filled with 
zeros. 
READY: the state is ready to read the current 
granule. 
 
3.3 Requantizer Subcore 
The architecture of Requantizer subcore 
(requantizer.vhd) is shown in figure 12. The 
data stored in the Gain_correction (made from 
Core Generator) is coefficients defined in 
ISO/IEC 11172 standard [3].   
 
Requantize block is written in the way of state 
machine (figure 13). This block interfaces direct 
with Controller block (controller.vhd), main 
memory block (mainmem.vhd) and Huffman 
decoder block (huffman.vhd). The task of the 
block is to search frame header and side 
information for data. 

 
Fig. 12  The architecture of Requantizer subcore 

 
Fig. 13  The state machine diagram for requantize 

 
The first step of the requantization process is to 

calculate   3
4

iis . The direct calculation of 
exponent 4/3 in VHDL code is difficult to 
implement and uses much logic resources. This 
paper offers a way to improve the performance is 
to use a look-up table containing all the 8192 
possible input values.  The above calculation can 
be divided into two cases: 
• If is(i) < 1024, the result can directly be 

found in the look-up table  
• If is(i) ≥  1024, the value is first divided by 

8. The result from the look-up table is then 
multiplied by 16.  

 
The block performing the look-up is called table 
look up. The table is stored in Block Select RAM 
and is included as a part of the initialized data 
section. 
A separate frequency line counter block has been 
created to provide the requantize block with the 
information about what frequency line that is 
being requantized at the time. The total amount 
of frequency lines per frame is 576. When the 
counter has become 576 the ready signal for the 

IDLE

B_type Adjust 

Block_info

CALC

Gain_corr SHIFTRAM

index<576
xr=0 

start=1

index=576

Huffman decoder Controller 

Requantize 
(state machine) 

counter 

Divider
_win 

Gain_
Correction 

(made from CORE 
Generator) 

shifter

Table_look_up
(made from CORE 

Generator) 

Table_ 
requantize

sci

index

divisor (8) 



 7

Requantizer is generated. The divider win block 
has been created for a simple and fast window  
calculation. There can be totally three windows 
in a short block. The shifter is used for 

multiplying ((sign(isi) 3
4

iis ) with
C

4
1

2 , see 
equations (1) and (2)).  
The gain correction is another table used for 
storing the correction factor. The table is stored 
in BSRs of Virtex-II Pro and is included as a 
part of the initialized data section. A shared 
multiplier is used in the requantization 
calculations for multiplying xr(i) with the 
correction factor. 
 
3.4 Reorder Subcore 
Reorder subcore (reorder.vhd) has one task; it 
reorders the frequency lines within a granule. 
The way that the frequency lines are reordered 
depends on flags in the side information header. 
The architecture of Reorder subcore is shown in 
figure 14.  

 
Fig. 14  The architecture of  reorder subcore 

 
The subcore is built around two memories. One 
memory (reorder_mem) contains the temporary 
storage for sample data and the second memory 
(reorder_lookup) contains the addresses for the 
main memory and the temporary storage 
memory. The order of these addresses describes 
the functionality of the reorder block. 
 
3.5 Antialias Subcore 
The encoder applies an alias reduction after the 
subband synthesis, because alias effects are 
introduced after a non-ideal bandpass filtering. 
So, the task of the antialias subcore 
(antialias.vhd) is to decrease these alias effects. 
This work can be performed by merging the 
frequency lines using eight butterfly calculations 

for each subband.  The architecture of this 
subcore is shown in fig. 15. 

 
Fig. 15 The architecture of subcore  antialias 

 
The implementation of the antialias subcore is a 
state machine containing one butterfly 
calculation and some counters. Data (Xk) for one 
butterfly is read from memory, four 
multiplications using the shared multiplier are 
carried out and then finally one addition and one 
subtraction are made. The results from these are 
stored back into the main memory. 
The constants (specified standard [3]) used for 
butterfly calculations are stored in BSRs of 
Virtex-II pro (aa_rom). 
 
3.6 IMDCT subcore 
Give the frequency lines Xk, the time samples xi 
can be obtained by using equation (3). The 
architecture for subcore IMDCT  (imdct.vhd) is 
shown in figure 16. 

 
Fig. 16  The architecture of  IMDCT subcore 

 
All cosine-values for each output are considered 
as a the known constants based on the 
combination of i and k in (3). Some survey of 

 Add/Sub 
(made from CORE 

Generator)
A 

B 

ADD S

Add/Sub 
(made from 

CORE 
Generator) 

B 

A 

ADD
S

BS_RAM  
 
 

(made from CORE 
Generator) 

A1

B1

B0 

A0 
Addr AddrB 

Zero 

Xk 
Write to 

main 
memory

for short 
windowing

For adding 

Acc  
(made from 

CORE 
Generator)

IMDCT 
(state machine)

A

B P
Mult

Mult 
(made  

from Core Generator) Aa_rom 
(made from Core 

Generator) 

A

B

O 

XK 

+

Mult 
(made from 

 Core Generator) 

Aa_rom 
(made from Core 

Generator) 
A

B

O XK+1 

Antialias 
(state machine) 

counter 

Reoder_mem 
(made from CORE 

Generator) 

Reoder 
(state machine) 

Reoder_lookup 
(made from CORE 

Generator) 

Read from 

main memory 

Write to main 

memory 



 8

these values shows symmetry between the 
different xi. Only half of the values are 
determined. The rest can be obtained as a 
function of the previously calculated values. 
Therefore calculating the first quarter and the 
third quarter of all values will be enough to 
determine the entire set. 
 For all multiplications the common multiplier is 
used. To obtain the summations of each xi (see 
equation 3) an accumulator is used. All cosine-
values (used for IMDCT-computations), and 
sine-values (used for windowing) are stored in 
BSRs of Virtex-II Pro (BS_RAM block). 
 
3.7 Filterbank subcore 
The architecture of the Synthesis polyphase 
filterbank subcore (filterbank.vhd)  is shown 
figure 17. The synthesis polyphase filterbank 
process can be divided in two parts: a part for 
calculating 32 point - MDCT and the second part 
- windowing and summation of 512 values to 
produce output samples. 

Fig 17.  The architecture for  filterbank subcore 
 
A 32-point modified DCT requires 
32x32multiplications using a non-optimized 
calculation method. Algorithms performing fast 
DCT computations are available, and based on 
the symmetry of the DCT matrix. This paper 
suggests an algorithm for DCT calculation – it is 
Lee’s algorithm [11].  It has a simple recursive 
structure where the transform is decomposed 
into even and odd parts: 

 X(n) = )
1

0 2
)12(cos()(∑

−

=
+

N

k N
nkkx π , 

                                        for  n=0 to N-1            (4) 
g(k) = x(k) + x(N-1-k) 

h(k) = ))1()((
)

2
)12(cos(2

1 kNxkx

N
nk

−−−
+π

 

G(n) = ))12(cos()(
1

2

0
∑
−

=

+

N

k N
nkkg π , for n = 0 to N/2-1 

H(n) = )
1

2

0
)12(cos()(∑

−

=
+

N

k N
nkkh π ,for n = 0 to 

2
N -1 

For n=0 to N/2-1: X(2n) = G(n) 
        X(2n+1) = H(n) + H(n+1), H(N/2)=0           (5) 

 
In this design, two BSRs are used to store the 
DCT and windowing coefficients as well as two 
BSRs used as a dual port shift register for 
passing data between the DCT and windowing 
blocks. 
 
3.8 Interface subcore   
The task of Interface subcore (giaotiep.vhd) is 
communication with the real world. The output 
data should be sent according to the I2S protocol 
– the standar developed by Philips. The I2S 
standard dictates that data is sent over a 
synchronous serial bus. The bus is a three wire  
bus consisting of a clock line, a word select line 
and a serial data line. 
 
Since the mp3 decoder works with frames and 
granules, therefore it can not produce a 
continuous chain of data, but can produce 576 
samples at a time. To make good this weak point, 
we design a FIFO-buffer using  BSRs of Virtex-
II Pro to store output data, and is used as a 1024 
sample buffer. 
 
In this design, the sample rate is fixed at 44.1 
KHz. However, the system clock of Virtex-II Pro 
is 24MHz; this is not suitable for audio 
applications. So, we design a division block that 
it can divide the clock by 544 and produces a 
44.118 kHz word clock. 
 
4. LOGIC HARDWARE RESOURCES  
 
The source code for the entire Core (referred 
from C code in sources [6], [7], [8], [9]) is 
compiled and synthesized on Xilinx ISE 7.1i by 
Xilinx XST tool, the result as follows: 
 
Device utilization summary: 
Selected Device : 2vp30ff896-7  
 
Number of Slices:        3630  out of  13696    26%   
Number of Slice FFs:     1583  out of  27392     5%   
Number of 4 input LUTs:  6213  out of  27392    22%   
Number of bonded IOBs:     27  out of    556     4%   
Number of BRAMs:           23  out of    136    16%   

Filter_ 
shifter 

(made from 
CORE 

Generator) 

Filterbank  
(State machine) 

dum_ 
mdct 

(made from 
CORE 

Generator) 

Filter_ 
window_ 
control 

Filter_ 
Drom 

(made from 
CORE 

Generator) 

Filter_ 
accum 

(made from 
CORE 

Generator) 

Ctrl_neg 
Ctrl_neg_zero 

Xk 

memo multo 

Filter_ 
negate 

Ctrl_drum 

Ctrl_accum 



 9

Number of MULT18X18s:       4  out of    136     2%   
Number of GCLKs:            2  out of     16    12%   
Timing Summary: 
   Minimum period: 22.351ns (Maximum Frequency: 
44.741MHz) 
   Minimum input arrival time before clock: 7.907ns 
   Maximum output required time after clock: 
13.127ns 
   Maximum combinational path delay: 6.277ns   
 

 
To verify the operation of the CORE, a testbench 
model for core and a model of MP3 player using 
the designed core are presented in figures 18 and 
19.  

 
Fig. 18     The testbench model for core 

 
 

Fig. 19  The model of  MP3 player 
 
5. CONCLUSIONS 
 
From the results obtained by the verification of 
two proposed models in Figures 18 and 19, the 
CORE has been met the aim of the design’s 
demands. However, the decoding process was 
only implemented in mono mode, so the sound 
quality of decompressed audio data of a sample 
stereo Mp3 signal is not completely perfect.  
 
To increase the quality of the core and decrease 
logic resources for the core implementation, the 

authors were interested in the choice of decoding 
algorithms.  Some algorithms for optimizing can 
be used in the implementation of subcores, 
especially IMDCT, filterbank, requantizer 
subcores. In this paper, the authors have 
implemented some algorithms to the VHDL 
hardware programming for fast computations, 
such as the fast MDCT, Lee’s algorithm [11].  
The coefficients defined in [3] are proposed to be  
stored in BSRs of Virtex-II Pro instead of writing 
to VHDL code as constants for a fast signal 
processing and saved resources of FPGA board.  
 
Acknowledgement: 
The authors would like to express our gratitude 
to the Electronics Division for supporting the use 
of Virtex-II Pro. 
 
 

REFERENCES 
 

[1] Thuong Le-Tien, Signal Processing and 
Wavelets, Hochiminh city National 
University Publisher, 2002. 

[2] Michael Keating and Pierre Bricaud, Reuse 
Methodology manual for SoC designs, 
Kluwer Academic Publishers, 2001. 

[3] Michael Robin and Michel Poulin, ISO/IEC 
11 172-3, Information technology - Coding 
of moving pictures and associated audio for 
digital storage media at up to about 1,5 
Mbit/s - Part 3, Digital Television 
Fundamentals, Mc Graw-Hill, 1997. 

[4] K. Brandenburg, H. Popp, An Introduction 
to MPEG Layer-3, Fraunhofer Institute, 
EBU Technical Review, June 2000. 

[5] D. Pan et al., IIS MP3 Decoder Source 
Code, http://www.mp3-tech.org, April 1995.  

[6] W.Jung, SPLAYMP3 Decoder Source Code, 
http://splay.sourceforge.net, April 2001. 

[7] M.Hipp et al., MPG123 Decoder Source 
Code, http://www.mpg123.de, April 2001. 

[8] K. Lagerstrum, MP3 Ref. Decoder Source 
Code, http://www.dtek.chalmers.se, 2001. 

[9]  Staffan Gadd: A hardware accelerated mp3 
decoder with bluetooth streaming 
capabilities, Master of science Thesis, 2001. 

[10]  B. G. Lee: A new algoritm to compute the 
discrete cosine transform, IEEE transactions 
on acoustics, speech and signal processing, 
vol ASSP-32, No 6, December 1984. 

 
 

Decoder 
(decoder.vhd) 

clk 
 
 
rst 
 
 
si_data 
si_valid 
si_req 

so_clk
so_data

so_sel

Clock 
generator 

Reset 
generator 

MP3 file 
reader 

tb_decoder.vhd 

Flash memory 
(store file mp3) 

Mem_reader 

decoder 

Serial to 
Parallel 

Conversion 

FPGA

so_clk 

so_data 

so_sel 

si_data 

so_valid 
 si_req 

 CLK Division 

clk 

Ali_M1535_
control 


