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Nhirng van dé vé diéu khién, chuyén dong bi dao dong va tinh chiéu theo cua cac hé thong khi nén
da ngan can cac h¢ théng nay duogc sir dung rong réi trong ky thuat nguoi may. Tuy nhién, tinh ran
chic, ti s6 cong suat/ khdi luong 16n, dé béo tri va tinh an toan cb hitu 1a nhing nhén t6 déng gia trong
thiét ké tay may. Nhiing uu diém nay da dan dén sy phat trién 1 loai co cdu tac dong moi la nhu co cau
tac dong Mckibben, co cdu tic dong dung cao su va tay may tmg dung co cau tac dong phong sinh hoc
dung khi nén. Tuy nhién, van ton tai mot s6 khuyét diém nhu dap tGng cua hé théng bi x4u di do su
thay dbi ciia quan tinh tai bén ngoai.

Dé giai quyét van dé nay, k¥ thuat didu khién chuyén doi bo diéu khién trong thoi gian thuc ding
phuong phap hoc vec to lugng tir cia mang neural dugc dé xuat. Phuong phap nay sé udc luong quan
tinh tai bén ngoai cho tay may. Két qua thuc nghiém s& minh chimg cho nhimg anh huong cua giai
thuat duoc dé xuat trong didu kién quan tinh tai bén ngoai thay doi.

ABSTRACT

Problems with the control, oscillatory motion and compliance of pneumatic systems have
prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio,
ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated
dexterous manipulator designs. These advantages have led to the development of novel actuators such
as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators.
However, some limitations still exist, such as a deterioration of the performance of transient response
due to the changes in the external inertia load in the PAM manipulator.

To overcome this problem, online switching algorithm of the control parameter using a learning
vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia
load of the PAM manipulator. The effectiveness of the proposed control algorithm is demonstrated
through experiments with different external inertia loads.

1. INTRODUCTION of the well-known systems for safety with

humans, it is preferable in contacting tasks with

From these advantages above, PAM
manipulator has been applied to construct a
therapy robot for cases in which high level of
safety for humans is required. However, the air
compressibility and the lack of damping ability
of the pneumatic muscle actuator bring a
dynamic delay of the pressure response and
cause oscillatory motion. Therefore it is not easy
to realize motion with high accuracy, high speed
and with respect to various external inertial
loads in order to realize a human-friendly
therapy robot. As the PAM manipulator is one

humans and many control strategies have been
proposed. As a result, a considerable amount of
research has been devoted to the development of
various position control systems for the PAM
manipulator. A Kohonen-type neural network
was used for the position control of the robot
end-effector within 1 cm after learning[1].
Recently, the authors have developed a
feedforward neural network controller and the
accurate trajectory following was obtained, with
an error of 1[°][2].



However, for widespread use of these
actuators in the field of manipulators, a high
speed, precise control of the PAM manipulators
is required. Among previous control approaches,
PID control[3], fuzzy PD+I learning control[4],
fuzzy + PID control[S], robust control[6],
feedback linearization control[7], feedforward
control + fuzzy logic[8], phase plane switching
control[9], variable structure control
algorithm[10] and Hoo control[11] have been
applied to control the PAM manipulator.
Though these systems were successful in
addressing smooth actuator motion in response
to step inputs, many of these systems used
expensive servo valves and the external inertia
load were also assumed to be constant or slowly
varying. Therefore, it is necessary to propose a
new intelligent control algorithm, which is
applicable to a very compressible pneumatic
muscle system with various loads.

In order to overcome these problems, a
learning vector quantization neural network
(LVQNN) was applied as a supervisor of the
traditional PID controller, which estimated the
external inertia load and switched the gain of the
PID controller.

The object of this paper is to implement
proportional valves, rather than expensive servo
valves, to develop a fast, accurate, inexpensive
and intelligent PAM control system without
regard for the changes in external inertia loads.
The proposed control algorithm was verified to
be very effective by experimenting with
different loads.
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Fig. 1 Schematic diagram
of PAM manipulator.

2. EXPERIMENTAL SETUP

Fig. 2 Structure of
the PAM

2.1 Experimental apparatus

The schematic diagram of the pneumatic
artificial muscle manipulator is shown in Fig. 1.
The hardware includes an IBM-compatible
personal computer (Pentium 1 GHz), which
calculated the control input and controlled the
proportional valve (FESTO, MPYE-5-1/8HF-
710 B) through D/A board (Advantech, PCI
1720), and two pneumatic artificial muscles
(FESTO, MAS-10-N-220-AA-MCFK). The
structure of the artificial muscle is shown in Fig.
2. The pressure difference between the
antagonistic artificial muscles produced a torque
and rotated the joint as a result. (Fig. 4) A joint
angle 6 was detected by a rotary encoder
(METRONIX, H40-8-3600ZO) and the air
pressure into each chamber was also measured
by the pressure sensors (FESTO, SDE-10-10)
and fed back to the computer through a 24-bit
digital counter board (Advantech, PCL 833) and
A/D board (Advantech, PCI 1711), respectively.
The external inertia load could be changed from
20kg-cm’ to 620 kg-em?’, which is a 3,000%
change with respect to the minimum inertia load
condition. The experiments were conducted
under the pressure of 4 [bar] and all control
software was coded in C program language. A
photograph of the experimental apparatus is
shown in Fig 3.

2.2 Characteristics of The PAM Manipulator

The PAM is a tube clothed with a sleeve
made of twisted fiber-cords, and fixed at both
ends by fixtures. The muscle is expanded to the
radial direction and constricted to the vertical
direction by raising the inner pressure of the
muscle through a power-conversion mechanism
of the fiber-cords. But the PAM has the
characteristics of hysteresis, non-linearity and
low damping. Particularly, the system dynamics
of the PAM changes drastically by the
compressibility of air in cases of changing
external loads. In our experiments, the external
load changed about 3,000[%] with respect to the
minimum inertia condition.

When using the PAM for the control of a
manipulator, it is necessary to understand the
characteristics of hysteresis, nonlinearity and so
on. Therefore, the following experiments were
performed to investigate the characteristics of
the PAM. Figs. 5~6 demonstrate the hysteresis
characteristics for the joint. This hysteresis can
be shown by rotating a joint along a pressure
trajectory from P;=Pmax, P,=0 to P=0,



P,=Pmax and back again by incrementing and
decrementing the pressures by controlling the
proportional valve. The hysteresis of the PAM is
shown in Fig. 6. The width of the gap between
the two curves depended on how fast the
pressures were changed; the slower the change
in the pressures, the narrower the gap. The
trajectory, control input to the proportional
valve, velocity, and pressure of each chamber of
the PAM are depicted in Fig. 5. The velocity is
numerically computed from the position. Near
the extreme values, the joint velocity decreased
since the increase in exerted force for a constant
change in pressure was less.

3. ONLINE SWITCHING CONTROL
ALGORITHM

3.1 The overall control system

The control performance of a PAM
manipulator depends on the pressure responses
of the pneumatic artificial muscle. Therefore,
the pressure should be controlled as rapidly and
accurately as possible. To handle these
problems, several research works have been
concerned with such factors as pressure control
systems with a compensation of pressure delay
using a 7 PCM digital control[12], valve
systems for the flow rate using piezo-electric
valves[13]. Though these pressure control
systems are satisfactory in their response, the
cost of the flow control system is very expensive
and some of these systems require another sub-
controller to satisfy set-point controls.

Musecle 2

Fig. 3 Photograph of the
experimental apparatus.

Fig. 4 Working
principle of PAM
manipulator.

On the contrary, Hildebrandt and his team
used an electronic proportional directional 5/3-
way control valve in order to control pressure

and flow rates [14]. With this valve, the stroke
of the valve-spool is controlled proportionally to
a specified set point. In addition, a fuzzy PID-
type tracking controller with learning ability has
good results with accurate positioning of the
pneumatic muscle after a few seconds of
operation [4]. However, some limitations still
exist because the necessary time for learning is
quite long and the controller output functions
properly after about 30~45 seconds according to
the input signal. And the problem of changes of
external inertia load is not mentioned in the
above system. Thus the goal of this paper is to
develop a fast, accurate, inexpensive and
intelligent pneumatic servo system for the PAM
without regard to changes of external inertia
loads.
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Fig. 5 Characteristics of PAM manipulator.
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Fig. 6 Hysteresis of PAM manipulator.

To cope with the 30 times change of external
inertia load with respect to the base inertia load,
the control performance cannot be guaranteed
by using a fixed gain controller and the external
inertia load condition must be recognized using
the dynamic information of the PAM
manipulator in an on-line manner. Here we
propose the learning vector quantization neural
network (which is abbreviated as LVQNN) as a
supervisor, which classifies 3 typical external
inertia loads (20, 290, 570 kgcm®). The
structure of the newly-proposed switching
control algorithm is shown in Fig. 7.
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Fig. 7 Structure of the proposed controller.

To control this PAM manipulator, a
conventional PID control algorithm was applied
in this paper as the basic controller. The
controller output can be expressed in the time
domain as:
K, deft) (1)
T, dt

Taking the Laplace transform of Eq. (1)
yields:

u(t) = Ket) + j.e(t)dt +K,T,

Ko E(s)+ K,T,EC) 2)
Ts

and the resulting PID controller transfer
function of:

U(s) = K,E(s) +

Ve =K, |1+ 1 +T,s 3)
Es) U Ts °
A typical real-time implementation at

sampling sequence k can be expressed as:
k= Kyet) utk 1)+ ey + k7, SZED (4)

where u(k), e(k) are the control input to the
control valve and the error between the desired
set point and the output of joint, respectively.
3.2 Recognition the external load condition
by using the LVQNN

The external load must be recognized for an
intelligent control of the PAM manipulator.
Here the LVQNN is newly-proposed as a
supervisor of the switching controller.
3.2.1 Structure of the neural classifier

According to the learning process, neural
networks are divided into two kinds: supervised
and unsupervised. The difference between them
lies in how the networks are trained to recognize
and categorize objects. The LVQNN is a
supervised learning algorithm, which was
developed by Kohonen and is based on the self-
organizing map (SOM) or Kohonen feature
map. The LVQNN methods are simple and
effective adaptive learning techniques. They rely
on the nearest neighbor classification model and
are strongly related to condensing methods,
where only a reduced number of prototypes are
kept from a whole set of samples. This
condensed set of prototypes is then used to

classify unknown samples using the nearest
neighbor rule. The LVQNN has a competitive
and linear layer in the first and second layer,
respectively. The competitive layer learns to
classify the input vectors and the linear layer
transforms the competitive layer’s classes into
the target classes defined by the user. Figure 8
shows the architecture of the LVQNN, where P,
y, W1, W2, R, S1, S2, and T denote input
vector, output vector, weight of the competitive
layer, weight of the linear layer, number of
neurons of the input layer, competitive layer,
linear and target layer, respectively. In the
learning process, the weights of the LVQNN are
updated by the following Kohonen learning rule
if the input vector belongs to the same category.
AW, (i, J) = A, (D(p(J) ~W,(i, 1)) O]

If the input vector belongs to a different
category, the weights of the LVQNN are
updated by the following rule

AW, (i, J) = =2a,((p()) W, (i, J)) (6)
where A is the learning ratio and al(i) is the
output of the competitive layer.
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Fig. 8 Structure of the LVQNN.

3.2.2 Data generation for the training of the
LVQNN

In the design of the LVQNN, it was very
important to identify what input to select and
how many sequences of data to use. Generally
the training result was better according to the
increase of the number of input vectors, but it
took more calculation time and the starting time
of the recognition of inertia load was later. In
our experiment, we prepared 2 cases of input
vectors as shown in Fig. 9(a) and (b). In Case 1,
the input vectors into the LVQNN were set for
the control input, angular velocity, and pressures
of each chamber. Meanwhile, the input vectors
into the LVQNN are set for the control input,



angular velocity and pressure difference in Case
2. In each case, the output of the LVQNN was
an integer value between 1 and 3, where 3 cases
could be classified according to the external
inertial load, i.e. for example, class 1 meant that
the range of the external inertia load was
approximately between 20 and 45 kg-em® as
shown in Table 1. To obtain the learning data
for the LVQNN, a series of experiments were
conducted under 9 different external inertial
load conditions, as shown in Table 1. The
experimental results of the generation of training
data are shown in Fig. 10(a)~(e), which
correspond to the control input to the
proportional valve, angular velocity of joint,
pressures in the chamber 1 and chamber 2, and
pressure difference, respectively. In each figure,
the number * and # in Inertia*# means the class
and the inertia change in that class, respectively.
In the experiments of the generation of training
data, the reference angle is set to 15 [°] and the
PID controller with fixed gain was used.
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Fig. 9 Learning data for LVQNN.

Table 1 Classification of external inertia load

Initial *# Class 1 Class 2 | Class 3
[kg-om’]
* 1 2 3
1 20 28 56
33 31 59
3 45 34 62

3.2.3 Training process of the LVQNN

The learning vector quantization neural
network (LVQNN) is a method for training
competitive layers in a supervised manner. A
competitive layer will automatically learn to
classify input vectors. However, the classes that
the competitive layer finds are dependent only
on the distance between input vectors. If two
input vectors are very similar, the competitive
layer probably will put them into the same class.

Thus, the LVQNN can classify any set of input
vectors, not just linearly-separable sets of input
vectors. The only requirement is that the
competitive layer must have enough neurons,
and each class must be assigned enough
competitive neurons.

A total of 9 experimental cases were carried
out to prepare for the generation of training data
for the LVQNN. In the training stage of
LVQNN, the number of input vectors were
adjusted from 5 to 21 with 5 steps and the
number of neurons in the competitive layer were
adjusted from 8 to 26 with 10 steps in each case,
as shown in Table 2, in order to obtain the
optimal weight of the LVQNN. To investigate
the classification ability of the LVQNN, the
same input vectors, which were used in the
learning stage, were re-entered into the LVQNN
and the learning success rate was calculated.
Here, the learning success rate defines the
percentage of success of the LVQNN learning,
where success means that the output of the
LVQNN was equal to the target class with
respect to the same input vectors.

As the LVQNN classified input vectors into
target classes by using a competitive layer and
the classes that the competitive layer found were
dependent only on the distance between input
vectors, a high learning success rate was
realized when the input vectors were distributed
widely.

From Fig. 10, both pressures of each chamber
of the muscle were used as learning data in Case
1 and the difference pressure in Case 2. From
Fig. 10, It was understood that the input vectors
in Case 1 were distributed more widely than
those in Case 2. Therefore, it was concluded that
the training result of Case 1 was better than the
training result of Case 2.

From Fig. 11 and Table 2, it was also
understood that the optimal number of input
vectors and neurons of the competitive layer
were 13 and 18, respectively and the maximum
training success rate was 87[%], which was
enough for a recognition of the external inertia
load condition.

3.3 Proposition of the smooth switching
algorithm

If the external inertial load condition was
different from the previous training condition,
the output of the LVQNN may have belonged to
the mixed classes with different ratios in each
case (i.e. if the external inertia load was between



the inertia of Class 1 and Class 2 it may have
belonged to 1 or 2 class). Therefore the
following switching algorithm was proposed to
apply to the abrupt change of class recognition
result. The switching algorithm is described by
the following equation:
class(k) = y.class(k —1)+(1— y).class(k) (7)
where k is the discrete sequence, yis the

forgetting factor and class (k) is the output of the
LVQNN at the k time sequence. The optimal
parameters of PID controller with respect to
each inertia condition were obtained by trial-
and-error through experiments, which are shown
in Table 3. These PID parameters seemed too
small because the sampling time was not
included in the derivation of the PID controller
and they had the magnitude of the sampling
time. From Table 3, it was understood that the
proportional, integral and derivative control
gains were decreasing in accordance with an
increase in the external inertia load.

Table 2. Training success rate of the LVQNN
(o)
(NIV: Number of Input Vector)
(NCL: Number of Neuron of Competitive

Layer)
NIV/
NCL 5 9 13 17 21
8 80.48 79.38 84.59 81.38 78.47

10 78.86 | 77.88 | 76.73 | 81.28 | 78.02
12 7851 | 7643 | 81.58 | 8232 | 78.64
14 7948 | 79.16 | 83.83 | 7647 | 82.13
16 8042 | 7997 | 84.50 | 84.78 | 81.83
18 80.92 | 77.80 | 87.02 | 77.70 | 79.56
20 7837 | 7728 | 84.77 | 79.71 78.73
22 77.60 | 78.06 | 83.06 | 8138 | 7792
24 7724 | 74.00 | 79.80 | 8233 | 77.96
26 76.96 | 80.09 | 80.42 | 79.70 | 76.86

(a) Casel
NIV/
NCL 5 9 13 17 21
8 74.54 72.30 70.57 70.88 71.12

10 73.01 71.52 | 74.67 | 7337 | 73.73

]

Fig. 10 Experimental results for learning data
generation.
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(a) Case 1 (b) Case 2

Fig. 11 Training success rate of the LVQNN.

12 74.06 | 72.81 74.12 | 74.10 | 74.02
14 75.13 | 7344 | 7578 | 7453 | 74.57
16 72.71 73.56 | 76.07 | 7093 | 7491
18 73.64 | 7477 | 7880 | 7496 | 76.09
20 72.14 | 7389 | 75.05 | 7642 | 75.61
22 72.66 | 7143 | 74.21 73.56 | 75.51
24 72.86 | 7226 | 73.84 | 74.81 75.37
26 7193 | 7149 | 73.79 | 7347 | 7531

(b) Case 2
Table 3. Optimal parameters of PID controller.
Class No. K, K; Ky
1 5x10° 0.1x10° 0.65x107
2 0.25x10° | 0.01x10° 0.06x107
3 0.1x10° 0.001x107 | 0.036x107

4. EXPERIMENT RESULTS

Figure 12 shows the experimental results of
position control with different external inertia
loads (20, 280 and 560 [kg-cm®]), where the
control gains were fixed and the same as that of
the minimum external inertia load condition.
From Fig. 12, it was understood that the system
response became more oscillatory according to
the increase of the external inertial load and it
was requested that the control parameters be
adjusted according to the change of the external
inertia load.

Next, experiments were carried out to verify
the effectiveness of the proposed switching
algorithm by the LVQNN. The experimental
results are shown in Fig. 13, 14 and 15, which



correspond to the minimum external inertial
load condition (Class 1), medium inertia load
condition (Class 2), and maximum inertia load
condition (Class 3), respectively. In these
figures, we show angle of joint, control input,
angular velocity, pressures in chamber 1 and 2,
output of the LVQNN and filtered output of the
LVQNN, respectively. As the number of the
input vector was 13, which included 4 control
inputs, 3 angular velocities, and 3 pressures of
each chamber, the output of the LVQNN started
to function after 3 sampling time (i.e. at least 4
control inputs must be prepared for the
calculation of LVQNN). From these
experimental results, particularly in the filtered
output of the LVQNN, it was verified that the
external inertial load was almost exactly
recognized to the correct class and an accurate
position control was realized with a steady error
of 0.05 [°].

The experimental results with an external
inertia load of 420[kg.cm’] are shown in Fig.16.
This load condition corresponded to Class 2 and
Class 3. The class number calculated from the
output of the LVQNN was between 2 and 3,
which proved that the external inertia load was
between 280 and 560[kg-em’]. In Fig. 17,
experiments were conducted to compare the
system response with respect to 2 different
weight conditions (280, 560[kg-cm’]) with and
without the proposed switching algorithm by the
LVQNN. From the experimental results, it was
found that the system response became
oscillatory according to an increase in the
external inertial load. On the contrary, the
system response was almost the same and the
steady state error was within 0.1[°] in any case
by using the proposed switching algorithm with
the LVQNN. It was also verified that the
proposed method was very effective in the
accurate position control of the PAM
manipulator.
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Fig. 12 Experiment results of the PAM
manipulator without switching control in the

case of three different external inertia load.

(PID parameters: Kp=5x10-3, Ki=0.1x10-3,
Kd=0.65x10-3)
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5. CONCLUSION

In this study, a fast, accurate, inexpensive and
external inertial load independent pneumatic
artificial muscle manipulator that may be
applied to a variety of practical positioning
applications was developed. The position
control was successfully implemented using a
proportional valve instead of an expensive servo
valve. And the steady state error was reduced
within 0.1 [°].

The second contribution of this paper is to
propose a learning vector quantization neural
network (LVQNN) as a supervisor of the
switching controller in the pneumatic artificial
muscle manipulator, where the LVQNN
functions to recognize the condition of the
weight of an external inertial load and to select
suitable gains for each load condition.

From the experiments of the position control
of an pneumatic artificial muscle manipulator, it
was verified that the smooth switching
algorithm is very effective to overcome the
deterioration of control performances of
transient responses even if the external inertia
load changed for 3,000[%].
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