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BẢN TÓM TẮT 
 

Những vấn đề về điều khiển, chuyển động bị dao động và tính chiều theo của các hệ thống khí nén 
đã ngăn cản các hệ thống này được sử dụng rộng rãi trong kỹ thuật người máy. Tuy nhiên, tính rắn 
chắc, tỉ số công suất/ khối lượng lớn, dễ bảo trì và tính an tòan cố hữu là những nhân tố đáng giá trong 
thiết kế tay máy. Những ưu điểm này đã dẫn đến sự phát triển 1 lọai cơ cấu tác động mới lạ như cơ cấu 
tác động Mckibben, cơ cấu tác động dùng cao su và tay máy ứng dụng cơ cấu tác động phỏng sinh học 
dùng khí nén. Tuy nhiên, vẫn tồn tại một số khuyết điểm như đáp ứng của hệ thống bị xấu đi do sự 
thay đổi của quán tính tải bên ngòai. 

Để giải quyết vần đề này, kỹ thuật điều khiển chuyển đổi bộ điều khiển trong thời gian thực dùng 
phương pháp học vec tơ lượng tử của mạng neural được đề xuất. Phương pháp này sẽ ước lượng quán 
tính tải bên ngòai cho tay máy. Kết quả thực nghiệm sẽ minh chứng cho những ảnh hưởng của giải 
thuật được đề xuất trong điều kiện quán tính tải bên ngòai thay đổi. 

 
ABSTRACT 
 

Problems with the control, oscillatory motion and compliance of pneumatic systems have 
prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, 
ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated 
dexterous manipulator designs. These advantages have led to the development of novel actuators such 
as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. 
However, some limitations still exist, such as a deterioration of the performance of transient response 
due to the changes in the external inertia load in the PAM manipulator. 

To overcome this problem, online switching algorithm of the control parameter using a learning 
vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia 
load of the PAM manipulator. The effectiveness of the proposed control algorithm is demonstrated 
through experiments with different external inertia loads. 

 
 
1. INTRODUCTION 

 
From these advantages above, PAM 

manipulator has been applied to construct a 
therapy robot for cases in which high level of 
safety for humans is required. However, the air 
compressibility and the lack of damping ability 
of the pneumatic muscle actuator bring a 
dynamic delay of the pressure response and 
cause oscillatory motion. Therefore it is not easy 
to realize motion with high accuracy, high speed 
and with respect to various external inertial 
loads in order to realize a human-friendly 
therapy robot. As the PAM manipulator is one 

of the well-known systems for safety with 
humans, it is preferable in contacting tasks with 
humans and many control strategies have been 
proposed. As a result, a considerable amount of 
research has been devoted to the development of 
various position control systems for the PAM 
manipulator. A Kohonen-type neural network 
was used for the position control of the robot 
end-effector within 1 cm after learning[1]. 
Recently, the authors have developed a 
feedforward neural network controller and the 
accurate trajectory following was obtained, with 
an error of 1[o][2]. 

 



However, for widespread use of these 
actuators in the field of manipulators, a high 
speed, precise control of the PAM manipulators 
is required. Among previous control approaches, 
PID control[3], fuzzy PD+I learning control[4], 
fuzzy + PID control[5], robust control[6], 
feedback linearization control[7], feedforward 
control + fuzzy logic[8], phase plane switching 
control[9], variable structure control 
algorithm[10] and H∞ control[11] have been 
applied to control the PAM manipulator. 
Though these systems were successful in 
addressing smooth actuator motion in response 
to step inputs, many of these systems used 
expensive servo valves and the external inertia 
load were also assumed to be constant or slowly 
varying. Therefore, it is necessary to propose a 
new intelligent control algorithm, which is 
applicable to a very compressible pneumatic 
muscle system with various loads. 

In order to overcome these problems, a 
learning vector quantization neural network 
(LVQNN) was applied as a supervisor of the 
traditional PID controller, which estimated the 
external inertia load and switched the gain of the 
PID controller.  

The object of this paper is to implement 
proportional valves, rather than expensive servo 
valves, to develop a fast, accurate, inexpensive 
and intelligent PAM control system without 
regard for the changes in external inertia loads. 
The proposed control algorithm was verified to 
be very effective by experimenting with 
different loads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. EXPERIMENTAL SETUP 

 
2.1 Experimental apparatus  

The schematic diagram of the pneumatic 
artificial muscle manipulator is shown in Fig. 1. 
The hardware includes an IBM-compatible 
personal computer (Pentium 1 GHz), which 
calculated the control input and controlled the 
proportional valve (FESTO, MPYE-5-1/8HF-
710 B) through D/A board (Advantech, PCI 
1720), and two pneumatic artificial muscles 
(FESTO, MAS-10-N-220-AA-MCFK). The 
structure of the artificial muscle is shown in Fig. 
2. The pressure difference between the 
antagonistic artificial muscles produced a torque 
and rotated the joint as a result. (Fig. 4) A joint 
angle θ was detected by a rotary encoder 
(METRONIX, H40-8-3600ZO) and the air 
pressure into each chamber was also measured 
by the pressure sensors (FESTO, SDE-10-10) 
and fed back to the computer through a 24-bit 
digital counter board (Advantech, PCL 833) and 
A/D board (Advantech, PCI 1711), respectively. 
The external inertia load could be changed from 
20kg·cm2 to 620 kg·cm2, which is a 3,000% 
change with respect to the minimum inertia load 
condition. The experiments were conducted 
under the pressure of 4 [bar] and all control 
software was coded in C program language. A 
photograph of the experimental apparatus is 
shown in Fig 3. 
2.2 Characteristics of The PAM Manipulator  

The PAM is a tube clothed with a sleeve 
made of twisted fiber-cords, and fixed at both 
ends by fixtures. The muscle is expanded to the 
radial direction and constricted to the vertical 
direction by raising the inner pressure of the 
muscle through a power-conversion mechanism 
of the fiber-cords. But the PAM has the 
characteristics of hysteresis, non-linearity and 
low damping. Particularly, the system dynamics 
of the PAM changes drastically by the 
compressibility of air in cases of changing 
external loads. In our experiments, the external 
load changed about 3,000[%] with respect to the 
minimum inertia condition. 

When using the PAM for the control of a 
manipulator, it is necessary to understand the 
characteristics of hysteresis, nonlinearity and so 
on. Therefore, the following experiments were 
performed to investigate the characteristics of 
the PAM. Figs. 5~6 demonstrate the hysteresis 
characteristics for the joint. This hysteresis can 
be shown by rotating a joint along a pressure 
trajectory from P1=Pmax, P2=0 to P1=0, 

Fig. 1 Schematic diagram 
of PAM manipulator. 

Fig. 2 Structure of 
the PAM 

 



P2=Pmax and back again by incrementing and 
decrementing the pressures by controlling the 
proportional valve. The hysteresis of the PAM is 
shown in Fig. 6. The width of the gap between 
the two curves depended on how fast the 
pressures were changed; the slower the change 
in the pressures, the narrower the gap. The 
trajectory, control input to the proportional 
valve, velocity, and pressure of each chamber of 
the PAM are depicted in Fig. 5. The velocity is 
numerically computed from the position. Near 
the extreme values, the joint velocity decreased 
since the increase in exerted force for a constant 
change in pressure was less. 
 
3. ONLINE SWITCHING CONTROL 
ALGORITHM 

 
3.1 The overall control system 

The control performance of a PAM 
manipulator depends on the pressure responses 
of the pneumatic artificial muscle. Therefore, 
the pressure should be controlled as rapidly and 
accurately as possible. To handle these 
problems, several research works have been 
concerned with such factors as pressure control 
systems with a compensation of pressure delay 
using a 7 PCM digital control[12], valve 
systems for the flow rate using piezo-electric 
valves[13]. Though these pressure control 
systems are satisfactory in their response, the 
cost of the flow control system is very expensive 
and some of these systems require another sub-
controller to satisfy set-point controls. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the contrary, Hildebrandt and his team 

used an electronic proportional directional 5/3-
way control valve in order to control pressure 

and flow rates [14]. With this valve, the stroke 
of the valve-spool is controlled proportionally to 
a specified set point. In addition, a fuzzy PID-
type tracking controller with learning ability has 
good results with accurate positioning of the 
pneumatic muscle after a few seconds of 
operation [4]. However, some limitations still 
exist because the necessary time for learning is 
quite long and the controller output functions 
properly after about 30~45 seconds according to 
the input signal. And the problem of changes of 
external inertia load is not mentioned in the 
above system. Thus the goal of this paper is to 
develop a fast, accurate, inexpensive and 
intelligent pneumatic servo system for the PAM 
without regard to changes of external inertia 
loads. 
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Fig. 5 Characteristics of PAM manipulator. 

 
 
 
 
 
 
 
 

Fig. 6 Hysteresis of PAM manipulator. 
To cope with the 30 times change of external 

inertia load with respect to the base inertia load, 
the control performance cannot be guaranteed 
by using a fixed gain controller and the external 
inertia load condition must be recognized using 
the dynamic information of the PAM 
manipulator in an on-line manner. Here we 
propose the learning vector quantization neural 
network (which is abbreviated as LVQNN) as a 
supervisor, which classifies 3 typical external 
inertia loads (20, 290, 570 kg·cm2). The 
structure of the newly-proposed switching 
control algorithm is shown in Fig. 7.  
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Fig. 3 Photograph of the 
experimental apparatus. 

Fig. 4 Working 
principle of PAM 

manipulator. 

∆ P  [b a r ]

 



 
 
 
 
 
 
 

Fig. 7 Structure of the proposed controller.  
To control this PAM manipulator, a 

conventional PID control algorithm was applied 
in this paper as the basic controller. The 
controller output can be expressed in the time 
domain as: 
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Taking the Laplace transform of Eq. (1) 
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A typical real-time implementation at 
sampling sequence k can be expressed as: 
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where u(k), e(k) are the control input to the 
control valve and the error between the desired 
set point and the output of joint, respectively. 
3.2 Recognition the external load condition 
by using the LVQNN 

The external load must be recognized for an 
intelligent control of the PAM manipulator. 
Here the LVQNN is newly-proposed as a 
supervisor of the switching controller. 
3.2.1 Structure of the neural classifier 

According to the learning process, neural 
networks are divided into two kinds: supervised 
and unsupervised. The difference between them 
lies in how the networks are trained to recognize 
and categorize objects. The LVQNN is a 
supervised learning algorithm, which was 
developed by Kohonen and is based on the self-
organizing map (SOM) or Kohonen feature 
map. The LVQNN methods are simple and 
effective adaptive learning techniques. They rely 
on the nearest neighbor classification model and 
are strongly related to condensing methods, 
where only a reduced number of prototypes are 
kept from a whole set of samples. This 
condensed set of prototypes is then used to 

classify unknown samples using the nearest 
neighbor rule. The LVQNN has a competitive 
and linear layer in the first and second layer, 
respectively. The competitive layer learns to 
classify the input vectors and the linear layer 
transforms the competitive layer’s classes into 
the target classes defined by the user. Figure 8 
shows the architecture of the LVQNN, where P, 
y, W1, W2, R, S1, S2, and T denote input 
vector, output vector, weight of the competitive 
layer, weight of the linear layer, number of 
neurons of the input layer, competitive layer, 
linear and target layer, respectively. In the 
learning process, the weights of the LVQNN are 
updated by the following Kohonen learning rule 
if the input vector belongs to the same category. 

)),()()((),( 111 jiWjpiajiW −=∆ λ  (5) 
If the input vector belongs to a different 

category, the weights of the LVQNN are 
updated by the following rule 

)),()()((),( 111 jiWjpiajiW −−=∆ λ  (6) 
where λ is the learning ratio and a1(i) is the 

output of the competitive layer. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Structure of the LVQNN. 
 

3.2.2 Data generation for the training of the 
LVQNN 

In the design of the LVQNN, it was very 
important to identify what input to select and 
how many sequences of data to use. Generally 
the training result was better according to the 
increase of the number of input vectors, but it 
took more calculation time and the starting time 
of the recognition of inertia load was later. In 
our experiment, we prepared 2 cases of input 
vectors as shown in Fig. 9(a) and (b). In Case 1, 
the input vectors into the LVQNN were set for 
the control input, angular velocity, and pressures 
of each chamber. Meanwhile, the input vectors 
into the LVQNN are set for the control input, 

 



angular velocity and pressure difference in Case 
2. In each case, the output of the LVQNN was 
an integer value between 1 and 3, where 3 cases 
could be classified according to the external 
inertial load, i.e. for example, class 1 meant that 
the range of the external inertia load was 
approximately between 20 and 45 kg·cm2 as 
shown in Table 1. To obtain the learning data 
for the LVQNN, a series of experiments were 
conducted under 9 different external inertial 
load conditions, as shown in Table 1. The 
experimental results of the generation of training 
data are shown in Fig. 10(a)~(e), which 
correspond to the control input to the 
proportional valve, angular velocity of joint, 
pressures in the chamber 1 and chamber 2, and 
pressure difference, respectively. In each figure, 
the number * and # in Inertia*# means the class 
and the inertia change in that class, respectively. 
In the experiments of the generation of training 
data, the reference angle is set to 15 [o] and the 
PID controller with fixed gain was used.  

 
 
 
 
 

 
 
 
 
 
 

Fig. 9 Learning data for LVQNN. 
 

Table 1 Classification of external inertia load 
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Thus, the LVQNN can classify any set of input 
vectors, not just linearly-separable sets of input 
vectors. The only requirement is that the 
competitive layer must have enough neurons, 
and each class must be assigned enough 
competitive neurons.  

A total of 9 experimental cases were carried 
out to prepare for the generation of training data 
for the LVQNN. In the training stage of 
LVQNN, the number of input vectors were 
adjusted from 5 to 21 with 5 steps and the 
number of neurons in the competitive layer were 
adjusted from 8 to 26 with 10 steps in each case, 
as shown in Table 2, in order to obtain the 
optimal weight of the LVQNN. To investigate 
the classification ability of the LVQNN, the 
same input vectors, which were used in the 
learning stage, were re-entered into the LVQNN 
and the learning success rate was calculated. 
Here, the learning success rate defines the 
percentage of success of the LVQNN learning, 
where success means that the output of the 
LVQNN was equal to the target class with 
respect to the same input vectors. 

As the LVQNN classified input vectors into 
target classes by using a competitive layer and 
the classes that the competitive layer found were 
dependent only on the distance between input 
vectors, a high learning success rate was 
realized when the input vectors were distributed 
widely. 

From Fig. 10, both pressures of each chamber 
of the muscle were used as learning data in Case 
1 and the difference pressure in Case 2. From 
Fig. 10, It was understood that the input vectors 
in Case 1 were distributed more widely than 
those in Case 2. Therefore, it was concluded that 
the training result of Case 1 was better than the 
training result of Case 2.  #

From Fig. 11 and Table 2, it was also 
understood that the optimal number of input 
vectors and neurons of the competitive layer 

 

Initial *# 
[kg·cm2] 

 Class 1 Class 2 Class 3 

                * 1 2 3 
1 20 28 56 
2 33 31 59 
3 45 34 62 
raining process of the LVQNN 
 learning vector quantization neural 
rk (LVQNN) is a method for training 
titive layers in a supervised manner. A 
titive layer will automatically learn to 
y input vectors. However, the classes that 
mpetitive layer finds are dependent only 
 distance between input vectors. If two 
vectors are very similar, the competitive 
robably will put them into the same class. 

were 13 and 18, respectively and the maximum 
training success rate was 87[%], which was 
enough for a recognition of the external inertia 
load condition. 
3.3 Proposition of the smooth switching 
algorithm 

If the external inertial load condition was 
different from the previous training condition, 
the output of the LVQNN may have belonged to 
the mixed classes with different ratios in each 
case (i.e. if the external inertia load was between 



the inertia of Class 1 and Class 2 it may have 
belonged to 1 or 2 class). Therefore the 
following switching algorithm was proposed to 
apply to the abrupt change of class recognition 
result. The switching algorithm is described by 
the following equation: 

)().1()1(.)( kclasskclasskclass χχ −+−=  (7) 
where k is the discrete sequence, χ is the 

forgetting factor and class (k) is the output of the 
LVQNN at the k time sequence. The optimal 
parameters of PID controller with respect to 
each inertia condition were obtained by trial-
and-error through experiments, which are shown 
in Table 3. These PID parameters seemed too 
small because the sampling time was not 
included in the derivation of the PID controller 
and they had the magnitude of the sampling 
time. From Table 3, it was understood that the 
proportional, integral and derivative control 
gains were decreasing in accordance with an 
increase in the external inertia load. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 10 Experimental results for learning data 
generation. 

 
 
 
 
 
 
 

 
Fig. 11 Training success rate of the LVQNN. 

 Table 2. Training success rate of the LVQNN 
(%) 

(NIV: Number of Input Vector) 
(NCL: Number of Neuron of Competitive 

Layer) 
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(a)  
 
 
 

NIV/ 
NCL 5 9 13 17 21 

8 80.48 79.38 84.59 81.38 78.47 
10 78.86 77.88 76.73 81.28 78.02 
12 78.51 76.43 81.58 82.32 78.64 
14 79.48 79.16 83.83 76.47 82.13 
16 80.42 79.97 84.50 84.78 81.83 
18 80.92 77.80 87.02 77.70 79.56 
20 78.37 77.28 84.77 79.71 78.73 
22 77.60 78.06 83.06 81.38 77.92 
24 77.24 74.00 79.80 82.33 77.96 
26 76.96 80.09 80.42 79.70 76.86 

(a) Case 1 

 
 
 
 
 
 
 
 
 
 
 
 

NIV/ 
NCL 5 9 13 17 21 

8 74.54 72.30 70.57 70.88 71.12 
10 73.01 71.52 74.67 73.37 73.73 
12 74.06 72.81 74.12 74.10 74.02 
14 75.13 73.44 75.78 74.53 74.57 
16 72.71 73.56 76.07 70.93 74.91 
18 73.64 74.77 78.80 74.96 76.09 
20 72.14 73.89 75.05 76.42 75.61 
22 72.66 71.43 74.21 73.56 75.51 
24 72.86 72.26 73.84 74.81 75.37 
26 71.93 71.49 73.79 73.47 75.31 

(b) Case 2 

 

Table 3. Optimal parameters of PID controller. 
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Class No. Kp Ki Kd
1 5x10-3 0.1x10-3 0.65x10-3

2 0.25x10-3 0.01x10-3 0.06x10-3

3 0.1x10-3 0.001x10-3 0.036x10-3
 
EXPERIMENT RESULTS 

Figure 12 shows the experimental results of 
sition control with different external inertia 
ds (20, 280 and 560 [kg·cm2]), where the 

ntrol gains were fixed and the same as that of 
 minimum external inertia load condition. 
m Fig. 12, it was understood that the system 
ponse became more oscillatory according to 
 increase of the external inertial load and it 
s requested that the control parameters be 
justed according to the change of the external 
rtia load. 
Next, experiments were carried out to verify 
 effectiveness of the proposed switching 
orithm by the LVQNN. The experimental 
ults are shown in Fig. 13, 14 and 15, which 



correspond to the minimum external inertial 
load condition (Class 1), medium inertia load 
condition (Class 2), and maximum inertia load 
condition (Class 3), respectively. In these 
figures, we show angle of joint, control input, 
angular velocity, pressures in chamber 1 and 2, 
output of the LVQNN and filtered output of the 
LVQNN, respectively. As the number of the 
input vector was 13, which included 4 control 
inputs, 3 angular velocities, and 3 pressures of 
each chamber, the output of the LVQNN started 
to function after 3 sampling time (i.e. at least 4 
control inputs must be prepared for the 
calculation of LVQNN). From these 
experimental results, particularly in the filtered 
output of the LVQNN, it was verified that the 
external inertial load was almost exactly 
recognized to the correct class and an accurate 
position control was realized with a steady error 
of 0.05 [o]. 

The experimental results with an external 
inertia load of 420[kg.cm2] are shown in Fig.16. 
This load condition corresponded to Class 2 and 
Class 3. The class number calculated from the 
output of the LVQNN was between 2 and 3, 
which proved that the external inertia load was 
between 280 and 560[kg·cm2]. In Fig. 17, 
experiments were conducted to compare the 
system response with respect to 2 different 
weight conditions (280, 560[kg·cm2]) with and 
without the proposed switching algorithm by the 
LVQNN. From the experimental results, it was 
found that the system response became 
oscillatory according to an increase in the 
external inertial load. On the contrary, the 
system response was almost the same and the 
steady state error was within 0.1[o] in any case 
by using the proposed switching algorithm with 
the LVQNN. It was also verified that the 
proposed method was very effective in the 
accurate position control of the PAM 
manipulator. 

 
 
 
 
 
 
 

Fig. 12 Experiment results of the PAM 
manipulator without switching control in the 
case of three different external inertia load. 

(PID parameters: Kp=5x10-3, Ki=0.1x10-3, 
Kd=0.65x10-3) 
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Fig. 17 Comparison of experimental results 

between with  
and without LVQNN 
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Fig. 13 Experimental 
results with no 

external inertia load 
(class 1) 
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Fig. 14. Experimental 
results when external 

inertia load is 280 
[kg.cm2] (class 2) 
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Fig. 16 Experimental 
results when external 

inertia load is 420 
[kg∙cm2] (class 2&3) 

Fig. 15. Experimental 
results when external 

inertia load is 560 
[kg.cm2] (class 3) 

 



 
5. CONCLUSION 

 
In this study, a fast, accurate, inexpensive and 

external inertial load independent pneumatic 
artificial muscle manipulator that may be 
applied to a variety of practical positioning 
applications was developed. The position 
control was successfully implemented using a 
proportional valve instead of an expensive servo 
valve. And the steady state error was reduced 
within 0.1 [o]. 

The second contribution of this paper is to 
propose a learning vector quantization neural 
network (LVQNN) as a supervisor of the 
switching controller in the pneumatic artificial 
muscle manipulator, where the LVQNN 
functions to recognize the condition of the 
weight of an external inertial load and to select 
suitable gains for each load condition.  

From the experiments of the position control 
of an pneumatic artificial muscle manipulator, it 
was verified that the smooth switching 
algorithm is very effective to overcome the 
deterioration of control performances of 
transient responses even if the external inertia 
load changed for 3,000[%]. 
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