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Abstract— This paper presents a new complete artificial neural 
network (ANN) of Direct – Torque Control (DTC) for the system 
Matrix converter (MC)– Induction Motor (IM) to decrease the 
time of calculation of the conventional control system and to 
observe another parameters such as motor speed .  The ANN – 
System has one ANN – IM - Model and ANN- Controller- Model 
which are trained separately. A computer simulation program is 
developed using Matlab/Simulink together with the Neural 
Network Toolbox. The simulated results demonstrate the good 
quality and the robustness of the proposed ANN-DTC for MC-
IM.  

Keyword:Direct Torque Control, Matrix Converter, Artificial 
Neural Network. 

I. INTRODUCTION 

Three- phase matrix converters (fig.1) have received 
considerable attention in recent years because they may 
become a good alternative to voltage- source inverter pulse-
width-modulation (VSI-PWM) converters. In reality, the 
matrix converter provides important benefits such as 
bidirectional power flow, sinusoidal input current with 
adjustable displacement angle (i.e. controllable input power 
factor), and a great potential for size reduction due to the lack 
of dc- link capacitors for energy storage [3-5]. The direct 
torque control method (DTC) for induction motors has good 
behaviors such as robust and fast torque response, no 
requirements for coordinate transformation, no requirements 
for PWM pulse generation and current regulators [6-8]. The 
use of DTC strategy for control of the system MC-IM had been 
worked out with an excellent performance [1].   

Because complicated calculations such as square root and 
trigonometric functions algorithm are involved, it is difficult to 
implement DTC using common IC hardware. 

The DTC algorithm is usually implemented by serial 
calculations on a DSP board. However, as a predictive control 
scheme, the DTC has a steady- state control error produced by 
the time delay of the lengthy computations, which depends 
largely on the control algorithm and hardware performance. 

 
Fig. 1 Schematic representation of a matrix converter 

A typical DSP (TMS32010) execution time of the DTC 
algorithm for a VSI- fed-IM is more than 250us [8]. ANN has 
faster parallel calculation and more simple circuit structure, so 
it is superior to a DSP board in execution time and hardware 
structure. The execution time of neural devices is less than 
0.5us (analog) or 0.8us (digital) per neuron [10].  So, DSC of 
VSI fed Induction Motor based on ANN had been worked out 
[2, 11]. 

This paper presents a new ANN controller for MC-IM with 
one complete ANN- model of Induction Motor and 7 types of 
subnets for the control system. Comparing with the DSP serial 
calculations of the DTC system for MC-IM, the control 
precision of DTC can be significantly improved by using the 
ANN algorithm. Another hand, the ANN-IM-Model allows the 
estimation of important parameters of motor such as speed, 
stator flux, rotor flux, torque without using the sensors. 

II. ANN-DTC  CONTROL SYSTEM FOR MATRIX CONVERTER – 
INDUCTION MOTOR 

In principle, the control technique of the matrix converter 
selects, at each sampling period, the proper switching 
configuration, which allows the compensation of instantaneous 
errors in flux magnitude, and torque, under the constraint of 
unity input power factor [1]. 



 
Figure 2. ANN-DTC Control System for Matrix Converter – Induction Motor 

The DTC scheme consists typically of 3/2 transformations of 
current and voltage, torque calculation, flux estimation, flux 
angle encoder, flux magnitude calculation, hysteresis 
comparator for flux, torque and average of sinψI, basis DTC 
switching table, Matrix converter optimum switching table, 
input voltage angle encoder , switching configuration table. 

 Fig. 2 presents a ANN System for matrix converter fed 
induction motor. Based on this schema, the control system is 
divided in to an ANN-IM-Model and an ANN-Controller-
Model, which are trained individually: 1) ANN Motor Model 
for Flux, Torque estimation and Speed, Rotor Flux and Stator 
current observer.  2)  ANN Controller Model for flux 
magnitude calculation, hysteresis comparator sub-net, flux (or 
voltage) angle encoder, space voltage code DTC switching 
table, Matrix converter optimal switching table, switching 
configuration table, coordinate transformation. 

A. ANN Motor Model(Fig.3) 

The purpose of this model is to estimate the stator flux, 
motor torque and to observe the motor speed. 

ANN - motor - model has 9 Sub-Nets for coordinate 
tranformation of stator voltage Vs, for determining stator flux 
λsα, λsβ, motor torque T, for estimating rotor flux λrα, λrβ , 
motor speed ω, also stator currents isα, isβ. This model consists 
of 4 inputs (stator voltages usa, usb , usc and load torque TL) and 
8 mentioned above outputs (λsα, λsβ, λrα, λrβ , T, ω, isα, isβ). The 
model consists of  9 Sub-nets : 

1. Coordinate Transform Sub-net (3-2) : 2 purelin 
2. Stator Flux λsα Estimation Sub-net (2-1) : 1 purelin 
3. Stator Flux λsβ Estimation Sub-net (2-1) : 1 purelin 
4. Rotor Flux λrα Estimation Sub-net (3-5-1) : 5 tansig, 1 
purelin 
5. Rotor Flux λrβ Estimation Sub-net (3-5-1) : 5 tansig, 1 
purelin 
6. Torque Estimation Sub-net (4-10-1) : 10 tansig, 1 purelin 
7. Speed Estimation Sub-net (2-10-5-1) : 10 tansig, 5 tansig, 1 
purelin 
8. Stator current isα Estimation Sub-net (2-1) : 1 purelin 

 
Figure 3.  ANN-Motor-Model 

9. Stator current isβ Estimation Sub-net (2-1) : 1 purelin 

The datasheets for training have been received by simulation 
of motor model with dynamic model of IM (transient 
equations expressed by [12]). The Levenberg- Marquardt 
method is used for training (Table 1).   

TABLE I.  9 SUB-NETS OF  ANN-MOTOR-MODEL 

Sub-
net 

Input(s) Output(s) Method Epochs 
max 

Error 

1 Vsa,Vsb,Vsc Vsα, Vsβ Levenberg 
Marquardt 

15000 1e-15 

2 Vsα, λrα λsα L-M 15000 1e-15 
3 Vsβ, λrβ λsβ L-M 15000 1e-15 
4 λrβ,λsα,ω λrα L-M 15000 1e-15 
5 λrα,λsβ,ω λrβ L-M 15000 1e-15 
6 λsα,λsβ,λrα,λrβ T L-M 15000 1e-15 
7 T, TL ω L-M 15000 1e-15 
8 λsα, λrα isα L-M 15000 1e-15 
9 λsβ, λrβ isβ L-M 15000 1e-15 

B.ANN Controller Model (Fig.4)  

The purpose of this model is to realise the DTC method for 
controlling of MC-IM. ANN - controller - model has 7 Sub-
Nets for Flux magnitude calculation, Hysteresis comparator, 
Flux Angle Encoder, Space Vector Code DTC switching Table, 
Matrix Converter Optimal Swiching Table, Decoder of 
Switching Configuration and Coordinate Transformation. This 
model consists of 7 inputs (power voltages ua, ub , uc , λsα, λsβ, 
Referenced torque T*, Referenced Startor Flux λs

*) and 1 
output (The code of switching configuration for Matrix 
Converter).  

 
Figure 4.   ANN-CONTROLLER- MODEL 



1) Flux magnitude calculation sub-net [2] 
It is possible to use the training method that proposed by 

authors in [2] :  Neural net includes 2 input square neurons, 4 
tansig neurons and 1 purelin neuron. The back-propagation 
learning rule is used to train this net until it can approximate 
the square root function (Fig.5). 

 
Figure 5.   Torque calculation sub-net 

 
Figure 6.   Flux magnitude calculation sub-net 

 

 
Figure 7.  Hysteresis comparator sub-net 

 
Figure 8.  Flux angle (or voltage angle) encoder sub-net 

2)  Hysteresis comparator Sub-Net [2] 
The flux error ελ , (torque error εT ) between stator flux λ 

and its command λ*  (motor torque T and the torque command 
T*) can be limited within ±∆λ (±∆T) using the hysteresis 
comparator. The flux hysteresis comparator is implemented by 
a recurrent network with hardlim and purelin neurons (fixed – 
weight) (Fig.6).  

3)  Flux angle (or voltage angle) encoder sub-net 
The purpose of this sub-net is to define the sector where the 

vector (flux, voltage) lies (Fig.7).  

Neural net consists two networks that are trained 
individually. The first one includes 2 inputs (λsα, λsβ) and 4 
sub-subnets for determining the codes A, B, C, D where the 
total number of neurons is 6 (2 square, 4 hardlims) (with fixed-
weight) (Table 2).   

The second network has 4 inputs (A, B, C, D), 1 hidden 
layer (6 logsig neurons) and 1 output (purelin). The m-file in 
Matlab program will be used for programming the algorithm 
(trainlm function – Levenberg –Marquardt algorithm). The 
code number of defined sector Θi  (code) is output (table 3) 
(Θi=0.1 means sector 1).  

TABLE 2. THE CODES OF FIRST LAYER 

Code A B C D 
Function Sign(λsα) sign(λsβ) ( )βα λλ sssign 3+−

 
( )βα λλ sssign +− 3

 
Activation 
function 
neuron 

hardlims hardlims Square, 
hardlims 

Square, 
hardlims 

Weight 1 1 (-1, 3) (-3,1) 
Bias 0 0 (0,0) (0,0) 

TABLE 3 : THE CODE NUMBER OF DEFINED SECTOR 

Inputs Output 
A B C D Θi 

0,1 -1,0,1 -1 -1 0.1 
0,1 0,1 0,1 -1,0,1 0.2 
-1 0,1 0,1 -1,0,1 0.3 
-1 -1,0,1 -1 -1 0.4 
-1 -1 0,1 -1,0,1 0.5 
0,1 -1 0,1 -1,0,1 0.6 

Then, decrease the neural number of hidden layer 
continuously with fixed training program and fixed training 
error, at last the minimum number of neurons of hidden layer is 
6 logsig neurons. So, the optimal total number of neurons is 7. 
After 124 training epochs, the sum squared error E is less than 
10-15. 

4)  Space voltage code DTC switching table sub-net 
A two-layer network is employed to implement the optimum 

switching table. Torque control signal CT, Flux control signal 
Cλ, number of sector θi (where the flux space vector lies) are 
inputs of network. The code of space vector voltage (i) is 
output (table 4).  

The sub-net is obtained by training (supervised) with trainlm 
function – Levenberg –Marquardt algorithm, the acceptable for 
training squared error is 10-20. The optimal number of neurons 
of 1st layer is 8 logsig neurons, the 2nd layer has 1 purelin 
neurons. So, the total number of neurons is 9 neurons 
(convergence obtained for 4357 epochs) (Fig.8). 

 

 

 



TABLE 4 : BASIC OPTIMUM SWITCHING TABLE (SPACE VECTOR VOLTAGE CODE 
SELECTION) 

Sector θ1 θ2 θ3 θ4 θ5 θ6 
Cλ=+1 0.2 

(V2) 
0.3 
(V3) 

0.4 
(V4) 

0.5 
(V5) 

0.6 
(V6) 

0.1 
(V1) 

Cλ=-1 0.3 
(V3) 

0.4 
(V4) 

0.5 
(V5) 

0.6 
(V6) 

0.1 
(V1) 

0.2 
(V2) 

CT= 
+1 

Cλ=  0 0.7 
(V7) 

0 
(V0) 

0.7 
(V7) 

0 
(V0) 

0.7 
(V7) 

0 
(V0) 

Cλ=+1 0.6 
(V6) 

0.1 
(V1) 

0.2 
(V2) 

0.3 
(V3) 

0.4 
(V4) 

0.5 
(V5) 

Cλ=-1 0.5 
(V5) 

0.6 
(V6) 

0.1 
(V1) 

0.2 
(V2) 

0.3 
(V3) 

0.4 
(V4) 

CT=  
-1 

Cλ=  0 0.7 
(V7) 

0 
(V0) 

0.7 
(V7) 

0 
(V0) 

0.7 
(V7) 

0 
(V0) 

 

 
Figure 9.  Space voltage code DTC switching table sub-net 

TABLE 5.  MATRIX CONVERTER OPTIMUM SWITCHING TABLE 

 

 
Figure 10.  Matrix converter optimal switching table sub-net 

5) Matrix converter optimal switching table sub-net 
We can assume that V1 is the VSI output voltage vector 

selected by the DTC algorithm in the given switching period. 
In order to generate a voltage vector similar to V1, one of the 
matrix converter switching configurations ±1, ±2, ±3 must be 
chosen. Among the six vectors, those having the same direction 
of V1 and the maximum magnitude are considered. If the input 
line – to – neutral voltage lies in sector 1, then the switching 
configurations, which can be utilized, are +1 and –3. Both these 

switching configurations satisfy the torque and flux 
requirements. These configurations determine input current 
vectors lying on the directions adjacent to sector 1 and 4. Then, 
if the average value of sin(ψi) has to be decreased, the 
switching configuration –3 has to be applied. On the contrary, 
if the average value of sin(ψi) has to be increased, the 
switching configuration +1 has to be applied. The switching 
table based on these principles is shown in Table 5 [1] 

A two-layer network is employed to implement the matrix 
converter optimum switching table, similar to previous sub-net. 
Control signal CΨ , space vector voltage Vi , code of θi  are 
inputs of network. The code of switching configurations (j) is 
output (Fig.9).  

The sub-net is obtained by training (supervised) with trainlm 
function – Levenberg –Marquardt algorithm, the acceptable for 
training squared error is 10-20. The optimal number of neurons 
of 1st layer is 21 tansig neurons, the 2nd layer has 1 purelin 
neuron. So, the total number of neurons is 22 neurons 
(convergence obtained for 2148 epochs). 

6) Decoder of Switching configuration table sub-net 
This sub-net is implemented for the purpose of determining 

which switch to be fired for three phase, according to switching 
configuration (Table 6). 

TABLE 6. DECODER OF SWITCHING CONFIGURATION TABLE 

 



 
Figure 11.  Decoder of switching configuration table sub-net 

A two-layer network is employed to implement the decoder 
of switching configuration table, similar to previous sub-nets. 
The code of switching configuration is input of network. The 
numbers of switch configurations (k) are outputs (for example, 
k = 0.1 means S1 in Fig.1).  

Method of training is similar to the previous sub-net, the 
acceptable for training squared error is 10-20. The optimal 
number of neurons of 1st layer has 19 logsig neurons, the 2nd 
layer has 3 purelin neurons. So, the total number of neurons is 
22 neurons (convergence obtained for 3252 epochs) (Fig.10). 

7) Coordinate transformation sub-net 
The purpose of this sub-net is to transform the coordination 

abc to αβ. Neural net has one layer of 2 purelin neurons with 
fixed weights, where Va, Vb, Vc are inputs, Vα, Vβ are ouputs 
(Fig.11).   

w1 = [ 1  -1/2  -1/2 ];  θ1 = [0] 
w2 = [ 0  sqrt(3)/2  -sqrt(3)/2 ]; θ2 = [0]  
 

 
 

Figure 12.  Coordinate transformation sub-net 

III.  SIMULATION OF  ANN-DTC FOR MC-IM 

A Simulink/Matlab program with the toolbox of neural –
network is used to simulate the ANN-DTC for MC-IM with the 
above-mentioned sub-nets. 

The induction motor model for the simulation studies has the 
parameters as following: 

Type: three-phase, squirrel-cage induction motor. 

20HP, Rs = 0.1062 (Ω), Rr = 0.0764 (Ω), Xs = 0.2145 (Ω), Xr 
= 0.2145 (Ω), Xm = 5.8339 (Ω), p = 2, J = 2.8 (kgm2).  

Reference flux λs* = 0.86 Wb.  

Reference torque: T* = 40 Nm when 0 s ≤ t ≤ 0.5 s; T* = 100 
Nm  when 0.5 s ≤ t ≤ 0.8s; T* = 20 Nm when 0.8 s ≤ t ≤ 1.2 s; 
T* = -100 Nm when 1.2 s ≤ t ≤ 1.4s; T* = 20 Nm when 1.4 s ≤ t 
≤ 1.7s. 

Time of simulation t = 1.7s. 

 Case study 1: Load torque TL = 20Nm.  
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Figure 12. Torque and speed responses (case study 1) 

 

Figure 13.  Locus of stator flux 
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Figure 14.  Phase motor voltage 

Case study 2: Change of load torque : TL = 0 Nm when 0 s ≤ t 
≤ 0.1 s; TL = 20 Nm  when 0.1 s ≤ t ≤ 1s; TL = 40 Nm when 1 
s ≤ t ≤ 1.5 s; TL = 20 Nm when 1.5 s ≤ t ≤ 1.7s. 

In this case, the locus of stator flux is identical to Fig.13. 

Case study 3: Load torque: TL = 20 Nm, rotor constant τr 
increases or decreases by 30%. The torque, flux and speed 
responses are identical as Fig. 12 -13. 
 Case study 4: Study of flux error caused by delay time of 
controller. Tdelay = 36µs for proposed ANN-controller (3µs to 
process each layer [10] for 12 layers in total) and Tdelay = 
100 µs for typical DSP-controller) (Fig. 16, 17) 
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Figure 15.  Torque and speed responses (case study 2) 

 
Figure 16.  Flux response of ANN DTC with 36µs delay (time = 0s – 0.018s) 

 

Figure 17.  Flux response of DSP DTC with 100µs delay (time = 0s – 0.018s) 

Simulation results demonstrate the excellent performance of 
the proposed ANN_DTC for MC-IM, while the good responses 
of the flux, torque, and speed are obtained (case study 1, fig.12 
- 14). The proposed ANN-DTC also has the good robustness 
when the load torque TL is changed (case study 2, fig.15); the 
rotor constant τr is changed (for example the value of τr is 
increased or decreased by 30%, case study 3). The simulation 

results also show that DSP-DTC produces more flux error than 
ANN-DTC (case study 4, Fig.16-17).  

IV. CONCLUSION 

This paper presents a new complete artificial-neural-network 
based direct–torque–control (ANN-DTC) scheme for an Matrix 
converter–fed Three-phase induction motor. Based on the 
understanding of DTC complexity (dynamic, recurrent, and 
nonlinear), the fixed weight and supervised methods with the 
training individually strategy are implemented for the 
controller design. Complete ANN system for MC-IM may be 
implemented by ASIC chip in the future. 

Compared with the DSP based DTC, the proposed ANN-
DTC scheme for Matrix converter –Induction motor incurs 
much shorter execution times and, hence, the flux and torque 
errors caused by control time delays are minimized.  
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