
Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 61

T-ENGINE – KIẾN TRÚC PHÁT TRIỂN TIÊU CHUẨN MỞ CHO
CÁC HỆ THỐNG NHÚNG THỜI GIAN THỰC

T-ENGINE - OPEN STANDARDIZED DEVELOPMENT PLATFORM

FOR REAL-TIME EMBEDDED SYSTEMS

Nguyen Minh Phong, Nguyen Tuan Thanh and Pham Tuong Hai

Faculty of Information Technology, Ho Chi Minh City University of Technology

BẢN TÓM TẮT

Chủ đề của bài báo là T-Engine, một hệ nhúng mở đang được phát triển và chuẩn hóa. Hệ thống
bao gồm phần cứng chuẩn và một nhân hệ điều hành thời gian thực. Dự án T-Engine được đề xuất bởi
giáo sư Ken Sakamura (http//:tron.um.u-tokyo.ac.jp/) trường Đại học Tokyo. Việc quảng bá hệ nhúng
này là nhằm vào mục đích đưa ra một hệ thống phát triển chuẩn cho nhiều ứng dụng khác nhau. Việc
chuẩn hóa bao gồm những nâng cấp về cấu hình phần cứng và về môi trường phát triển ứng dụng,
cộng thêm với việc phân phối và cho phép sử dụng mã nguồn mở của các khối chương trình phần
mềm. Nội dung bài báo giới thiệu về lịch sử của T-Engine, các thế hệ sản phẩm, kiến trúc, thành tựu
và các thủ tục phát triển phần mềm. Nội dung bài báo cũng giới thiệu một số ứng dụng mẫu mà nhóm
tác giả đã thực hiện trong thời gian qua trên T-Engine/SH7760 và môi trường phát triển Personal
Media Corporation.

ABSTRACT

The topic of the term paper is T-Engine. T-Engine is an open, standardized real-time operating

system (RTOS) development platform for embedded systems. It is composed of standardized hardware
(T-Engine platform) and standard real-time kernel (T-Kernel). The T-Engine project was proposed by
Professor Ken Sakamura (http://tron.um.u-tokyo.ac.jp/) from The University of Tokyo. It was
launched with the aim of standardizing the development platform of embedded systems. This includes
improvements to the hardware configuration and the development environment, plus distribution and
portability of software components. The term paper would elaborate the history of T-Engine, the
generations of its development, its architecture, its achievements, and software development
procedures. Then this paper would also include a demo with some small embedded applications,
developed on T-Engine/SH7760 development kit of Personal Media Corporation
(http://www.personal-media.co.jp/welcome-e.html).

1. INTRODUCTION

These are the days when the term like

embedded is increasingly becoming more and
more popular in the world. We are flooded
with embedded systems that seem to be
everywhere. We can define an embedded
system as “A combination of computer
hardware and software, and perhaps
additional mechanical or other parts, designed
to perform a dedicated function” [1], for
example, washing machines, robots, hand-

held telephones, modem and automobiles.
Each of these devices contains a processor and
software and is designed to perform a specific
function. For example, the modem is designed
to send and receive digital data over an analog
telephone line. That's it. And all of the other
devices can be summarized in a single
sentence as well. If an embedded system is
designed well, the existence of the processor
and software could be completely unnoticed by
a user of the device. Such is the case for a
microwave oven, alarm clock, or camcorder.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 62

When developing embedded systems, there
are some following challenges:

• Limited operating system support for
programming.

• Limited processing time of devices.
• No standardized architecture.
For these reasons, a system architecture

standard for real-time embedded systems
called T-Engine was developed.

The TRON Project (http://www.tron.org)
has established the T-Engine Project in order
to promote an open, real-time standardized
development environment with the aim of
achieving a “ubiquitous computing
environment” where everything has a
computer incorporated in it and is connected to
a network. T-Engine offers an efficient
development environment for the development
of portable information devices, home
electronic appliances and other network
devices in a short period of time. The TRON
Project's network security architecture,
eTRON, has also been incorporated in T-
Engine. This eTRON sub-architecture is
intended to prevent tapping, falsification, and
disguise of malicious users so that electronic
information can be safely delivered to the other
party through insecure network channels such
as the Internet.

For efficient development, the hardware

(T-Engine board) and real-time operating
system (T-Kernel) are standardized and
distribution of middleware is encouraged.
Moreover, T-Engine is able to smooth
cooperation among chip makers, hardware
makers, software makers and system
manufacturers, encourage mutual business
dealings, reduce development time and cost,
thus enabling high value added product
offerings in a short period of time.

T-Engine is a standard architecture for next

generation, real-time embedded systems aimed
at improving software productivity for these
systems. An open consortium, the T-Engine
Forum (http://www.t-engine.org) in the TRON
Project, developed this architecture.
Consortium members include computer
hardware and software vendors,
telecommunication carriers, and computer-
using companies. T-Engine development

followed a strong philosophy that recognizes
the importance of an open standard,
middleware distribution, a good balance
between virtualization and adaptation, chip-
free hardware standardization, and security [2].

T-Engine is designed to provide some

following advantages:
• Open standard for designing devices.
• Middleware distribution to develop

different kinds of device.
• Chip-free hardware standard.
• More security for devices.

2. T-ENGINE ARCHITECTURE

T-Engine reference system model consists

of a target system and a development
environment system. The target system is
where the developed software runs. The
development environment system is where
developers build the software. In embedded
systems, the target system and the
development environment are usually
different. The layered design of these systems
defines specifications for each layer. Figure 1
shows a model of this architecture.

2.1. Target System’s Layered Architecture

In the T-Engine target system’s layered

architecture, each set of hardware
specifications includes

• Functional specifications describing
circuit operations, and

• Physical specifications defining the sizes
and positions of connectors and other
components.

2.1.1. The Hardware Layer

The hardware layer handles system

specifications separately for development and
products, but the development and product
systems share the standardized functional
specifications. This sharing assures that the
same software works on both systems. They
strictly define functional specifications for
peripheral hardware, but, for reasons
mentioned previously, they leave them
unspecified for the CPU to expedite the
adaptation of T-Engine on application systems.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 63

Physical specifications for the development
and product systems might not be the same.
For development systems, they strictly define
and standardize the board size, connector type
and position, electrical properties, and other
characteristics. This enhances the reusability of
expansion boards. On the other hand, our
approach permits and actually recommends
installing product systems based on different
physical specifications, provided that the
systems satisfy the functional specifications.
For instance, when installing a target system
on a potentially popular product, it’s better to
make custom LSI chips and install lower-cost
and more compact hardware based on the same

functional specifications as those of T-Engine.
In the case of products in smaller lots, not
requiring downsizing, it’s efficient to use the
development system as the product system. To
support this, they have made the board size in
T-Engine’s physical specification as compact
as possible.

They’ve developed several system
architectures, each aimed at a different target
system size. There are four architectures
available now: standard T-Engine, micro- or
µT-Engine, nano- or nT-Engine, and pico- or
pT-Engine.

Standard Hardware
The standard T-Engine hardware is

comprised of a 75mm x 120mm CPU board
(see Figure 2), which combines with an LCD

board, a power supply board, and an expansion
board, making it possible to build the target
system hardware out of it. The µT-Engine
CPU board is a lot smaller, being 60mm x

Target system
Product system Development

system

Development
environment system

Software

Application software in T-
Format

Middleware in T-Format

Kernel
layer

T-Kernel

Monitor
layer

T-Monitor

Hardware
pT-Engine

nT-Engine

µT-Engine
T-Engine

Functio
nal

Physical
specific

T-Engine

appliance Functiona
l

Product-
based

T-Builder

Monitor

Unix-based OS

GNU assembler

GNU debugger
front end

GNU C
compiler

Application
layer

Middleware
layer

Debug support
hardware

In-circuit
emulator

…

Figure 1: Model of the T-Engine architecture.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 64

85mm in size. The mechanical size and
arrangement of the external connectors on the
CPU board are also being standardized. The
type of CPU applicable is not restricted to any
specific one. A unique feature of the T-Engine
hardware is that with a miniature board
configuration, it is possible to turn it into
something closer to the image of the target
system [3].

The standard T-Engine platform is suited

for mobile information appliances such as
next-generation mobile phones and electronic-
book readers. Suitable devices would have a
graphic display and an input device, providing
an advanced user interface; run on a battery;
and have a wireless communication function.

The µT-Engine is a standard platform for
computers embedded in such units as home
appliances and in measuring equipment and it
does not necessarily need a memory
management unit (MMU). They apply the
same specifications used for T-Engine to the
expansion connector to enable the sharing of
hardware components between both engines.
Unlike T-Engine, a graphic display is not
required because µT-Engine devices would use

a simple user interface. This platform also
provides an eTRON chip as standard.

The nT-Engine is an inexpensive, coin-
sized hardware platform intended for such
nodes as lighting fixtures, sensors, and window
controllers. It consists of a processor core,
network interface, and peripheral functions. A
hardware library integrates the necessary
peripheral functions. This platform serves as a
processor core, combining functions to create a
target system.

The pT-Engine is a chip-shaped platform
with a sensor function and a wireless or optical
communication function. Only several
millimeters in size, pT-Engine fits into a large
variety of non-powered objects, including
clothing, desks, chairs, paintings (hanging on
walls), dishes, and drug bottles. Rather than
just a simple radio frequency identification
(RFID) device, pT-Engine is also a computer
with processing capability. For example, this
chip could attach to a wine bottle in transit to
monitor and record temperature and vibration
data for quality assurance. To run on non-
powered objects, the chip might use
electromagnetic energy from a communication
medium or power generated by micro electro-
mechanical systems using micro pulsation.

- CPU board: Interfaces, such as

the standard board and serial IO
which can operate alone, PCMCIA, a
sound codec, USB host, eTRON SIM,
LCD, and an expansion bus
connector, are carried.

- LCD board: The display devices
PDA, an Electronic Book, for cellular
phones, etc. It consists of user
interface, such as a touch panel and a
key input.

- Extension board: It consists of
extended functions, such as various
networks, an extended memory, and
mass memory.

- Debugging board: It consists of
debugging functions such as JTAG
interface etc., and a writing of Flash
Memory function on the CPU board.

Figure 2: The shape of a standard board T-Engine

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 65

2.1.2. The software layer

The software layer contains standard sets

of specifications (Figure 3). Following these
specifications ensures that software is suited to
run on hardware satisfying T-Engine’s
functional specifications. Unlike the hardware
specifications, the development and product
systems share the software specifications
except for a debug support function, which
only the development system supports. So, the
software layer is divided into the following
four layers:

• Monitor: This software enables basic
operations on T-Engine hardware, including
functions that run application software, load it
into memory, and read from and write to

memory. This layer defines a standard
specification called T-Monitor.

• Kernel: This is the real-time kernel of the
T-Engine system architecture, as defined in the
T-Kernel specifications.

• Middleware: This layer provides services
to application software with user-defined
system calls, application tasks, and libraries
offered by T-Kernel. The T-Format
specification standardizes formats for
middleware source and execution code.

• Application: This layer enables
applications based on the T-Engine
architecture. As in the middleware layer, T-
Format defines the code formats for
application software.

T-Monitor

This monitoring software is used for booting
OS and debugging. It specification is defined,
and the interface with the development
environment is taken. T-Monitor is the basic
monitor program in T-Engine, intended to be
resident in ROM for provision of the following
functions.

T-Kernel
The standard real-time OS that runs on T-

Engine is called T-Kernel. T-Kernel acts as the
implementation platform for various
middleware and applications that run on T-
Engine, and is used as the common kernel in a
ubiquitous computing environment. The T-
Kernel/OS with general real-time OS functions

such as tasks and semaphores, etc., T-
Kernel/SM (System Manager), which
improves the distribution of device drivers and
middleware, and T-Kernel/DS (Debugger
Support) with debugging functions are all
being included in T-Kernel. The T-Kernel/SM
determines a standardized interface for
embedding OS extended functions (managers)
and device drivers, and is devised to enable
independent development and distribution of
middleware and/or applications, and device
drivers. On the other hand, if a developer has
been using ITRON up to now, the shift to
adopting T-Kernel will be smooth as the T-
Kernel/OS basic functions are the same as past
ITRON-specification OS.

…

……

T-Kernel/
Debugger

support

T-
Kernel/

OS

T-Monitor

T-Kernel/
System

manager

Subsyste
m 1

Su
b. 2

Devi
ce
Driv

er 1

Devi
ce
Driv

er 2

Applicatio
n 1

Applicatio
n 2

Application
software

Middlew
are

T-
Kernel

T-
Monitor

Figure 3: T-Engine runtime software architecture.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 66

T-Kernel generally refers to all of:
- T-Kernel Operating System (T-Kernel/OS)
- T-Kernel System Manager (T-Kernel/SM)
- T-Kernel Debugger Support (T-Kernel/DS)

But in some cases T-Kernel/OS only
(narrow definition) is called T-Kernel.

In T-Kernel and ITRON, we call the
resources that we make into the objects of
operations kernel objects, or simply objects.
Tasks and cyclic handlers, semaphores,
mailboxes, etc., are all kernel objects. What we
call creating programs on T-Kernel we could
also call creating kernel objects.

On T-Kernel, they dynamically manage
each type of resource. This is important in
order for T-Engine to function as a distribution
platform for middleware, and it is a great
difference with ITRON. What one must first
pay attention to in T-Engine programming is
the fact that kernel object IDs are
automatically assigned dynamically.

On both T-Kernel and ITRON, kernel
objects are identified according to numerical
values called IDs. What identifies a task is a
task ID, and what identifies a semaphore is a
semaphore ID.

On ITRON, normally, these IDs were
determined statically at the time the program
was created, and it was possible for the user to
assign arbitrary values. For example, in the
case of task IDs, it was possible to determine at
the time of programming that "the ID of Task
A is 1, and the ID of Task B is 2."

On T-Kernel, object IDs are all
automatically assigned dynamically at the time
of program execution. For example, task IDs
are assigned through T-Kernel internal
processing at the time of task generation.
Accordingly, the user cannot assign arbitrary
IDs. Also, it becomes necessary to put down in
variables inside programs IDs that are assigned
by the kernel.

In ITRON, the user decided on the
allocation of memory, and this was determined
statically at the time the program was created.
It was a situation in which the user created a
so-called memory map. For example, in a case
where one created a memory pool, the user had
to allocate the memory region of that memory
pool, and he/she had to transmit that to the

ITRON system. In T-Kernel, when one creates
a memory pool, if one only specifies the size of
the memory pool, afterward when T-Kernel
executes the program, it will allocate the
memory region for you. It is the same also with
the regions of message buffers, task stack
regions, and so on.

Furthermore, T-Kernel is compatible with
high-level memory management in which an
MMU is used. Memory management also is
based on dynamic allocation in T-Kernel.

The basic logical unit of concurrent

program execution is called a “task”. In T-
Kernel, task states are classified primarily into
the five states (Ready, Run, Wait, Dormant,
Non-Existent). Of these, Wait state in the
board sense is further classified into three
states (Wait, Wait-Suspended, Suspended).
The task state transitions will be detailed in the
figure 4.

Device Drivers
The development of device drivers for

general or specific applications is simplified by
disclosing the source code of a standard device
driver to the public. The system makers can
create target device drivers by referring to it.
Now, there are many standard device driver
specifications for the following devices:

• Serial communications device
• LAN network interface device
• System disk (PC card type, USB

storage, RAM/ROM disk)
• eTRON chip SIM interface device
• Clock device
• Keyboard/pointing device
• Screen (display) device
• Audio/voice device
• MIDI device
Besides these, they have drawn up device

manager specifications for USB and PCMCIA.
These device managers control the USB Host
Controller and the PCMCIA Controller, and
they are things that provide services to device
drivers that deal with each USB device and
each PCMCIA device located at a higher level
(higher level device drivers).

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 67

2.2. Development environment system’s
layered architecture

The hardware layer for the development

environment includes several types of
hardware the in-circuit emulator, for example
for hardware emulation and testing. The T-
Engine architecture does not specifically
define hardware specifications except for the
interface between the hardware and the target
system, and the interface with higher-level
development environments.

The software layer includes a development

environment layer and an operating system or
kernel layer. The development environment
software includes compilers, linkers,
assemblers, and front-end systems for cross

debuggers. T-Builder is the standard
development environment specification for
these systems and components. T-Builder’s
specifications conform to those of GNU
development systems. For development, a
programmer could use any operating system or
kernel that T-Builder (the standard
development environment) can run on the
system.

2.2.1. Middleware and software
development

The T-Engine Project is constructing a

standard development environment (T-
Builder), a standard format of distributed
software (T-Format), a basic collection of
standard library middleware (T-Collection)

Termina
te

(tk_ter_t
sk)

Suspend
(tk_sus_t

sk)

Wait

condition

Exit and
delete

(tk_exd_tsk
)

Resume
(tk_rsm_

tsk
tk_frsm_

tsk)

Termina
te

(tk rsm

Release
wait

Suspend
(tk_sus_tsk

)

Termina
te

(tk_ter_t
sk)

Create
(tk_cre_t

sk)
Delete
(tk_del_t

sk)

Exit
(tk_ext_tsk)

Terminat
e

Terminat
e

(tk_ter_t
sk)

Termina
te

Terminate
(tk_ter_tsk

)

Rele
ase

wait WAIT state

WAITING-SUSPEND
state

SUSPEND
state

DORMANT state

NON-EXISTENT state

READY state
Preemti

on

Dispatchi
ng RUN state

Figure 4: Task state transitions

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 68

that runs on T-Kernel, and a framework for
distributing and selling software (T-Dist) that
runs on T-Engine.

2.2.2. T-Builder

Specifications for a standard development

environment ensure the portability of
middleware and application software. Due to
its nature, T-Engine first requires a common
development environment compatible with
multiple CPUs, and, secondly, an open
development environment. They have defined
T-Builder, a minimum and basic standard
development environment, and adopted the
GNU development environment. T-Builder is
simply a reference standard environment
intended for building T-Engine middleware.
Development environment vendors will most
likely offer better development environments
that feature compatibility with T-Builder.

2.2.3. T-Format

T-Format is a set of standard software

formats for T-Engine middleware distribution.
T-Format consists of a binary-code format,
source code style guidelines, and a document
format. Software formatted according to T-
Format will run on target systems that satisfy
T-Engine and T-Kernel specifications. The T-
Builder basic software development
environment handles source code and binary
code based on T-Format. We use C, C++, and
Java as basic languages for standardization.

We have employed the executable and
linking format (ELF) as the binary code format
and Dwarf as the debug symbol format. To
prevent symbol collisions when linking
multiple libraries, T-Format defines the
naming rules and header file format for such
global symbols as global variables and
exported functions. Regarding source code
style, it’s crucial to avoid symbol collision
when linking libraries. The naming rules
defined in binary format for global symbols
apply directly to the source code format.

2.2.4. T-Collection

T-Collection is a basic set of software that

runs on T-Engine and T-Kernel. For example,

the collection might contain a small library
consisting of tree programs, a sorting function,
a searching function, various encryptions and
signatures, data compression algorithms, and
data format translations. It could also include
basic resident programs, such as those for
TCP/IP, and file systems based on file
allocation tables. T-Collection is similar to the
ACM Collected Algorithms (http://
www.acm.org/calgo) collection and, more
importantly, is in a standard format that makes
it easy to run code immediately. Normally, the
T-Engine Forum will provide these algorithms
in source code format but will offer some in
binary format. The T-Engine Forum collects
the content of T- Collection, referees it, and
releases it.

2.2.5. T-Dist

The T-Dist framework aids Internet

distribution of software components built by
software vendors using T-Format. When a
vendor registers a middleware package at the
T-Engine Forum, other users can search for it
on the T-Dist software database. T-Dist’s
licensing mechanism also enables license
management operations, such as for settling
payments related to distribution. To provide
this licensing mechanism, middleware handles
billing procedures and manages protected
execution in coordination with an eTRON
secure chip. By using the micropayment,
cipher, and authentication functions offered by
eTRON, this middleware provides a
framework for various middleware licenses.
For example, implementations can include
settings that permit execution only on eTRON
systems that store a certain encryption key.
The key is delivered according to the source
code license, thus preventing unlicensed
system use. As another example, we can
realize a payment mechanism in which the
price depends on the number of times
particular software runs.

2.2.6. Middleware

This represents the various middleware

that run on T-kernel. Network protocol stacks,
filing systems, Japanese language processing,
Kana-to-Kanji conversion, eTRON-specified

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 69

security software, GUI, audio processing, Java
etc., are available. Combining this software
makes it possible to develop a stable product
within a short period of time. For the purpose
of encouraging more middleware distribution,
information on the possible uses and
combinations of middleware will be managed
by T-Engine Project database, and will be
accessible to the public. This database system
will strongly support the distribution of
middleware. It is scheduled to be employed
jointly with the eTRON-specified accounting
system software in the near future.

2.2.7. Development Environment

In order to smooth the software

development and middleware distribution for
T-Engine, all object code formats are
standardized using GNU. The GNU
development environment running on PC-
based Linux, followed by the monitor (T-
Monitor) for transferring object programs onto
the T-Engine, etc., are all features being
included in the T-Engine Development Kit.
Moreover, the file management functions for
storing the transferred programs onto an ATA
card etc., and its command line interpreter
(CLI) for commanding the functions
interactively are also being supplied to
improve the efficiency of software
development on T-Engine.

The T-Engine project does not specify the type
of CPU used and is able to absorb variations in
CPU by its development environment. More
specifically, careful consideration has been
given so that most middleware, device drivers,
and applications developed may be corrected
and made able to operate even on a different
CPU by the simple act of recompiling.
Moreover, the T-Engine project standardizes
the object format of programs by referring to
the GNU development environment model so
that improvement on the distribution of
middleware can be achieved.

3. ACHIEVEMENTS OF T-ENGINE

3.1. Various Products based on T-Engine
Architecture

Tags

In 2003, the T-Engine Forum adopted

standards for ultrasmall (0.4 mm2) tags capable
of holding 6,000 times more data than bar
codes. The chips, part of the T-Engine family,
are equipped with tiny antennae that can
transmit data to a reading device about 30 cm
away.

A growing library of middleware is
available for T-Engine. According to the T-
Engine Forum Web site it includes network
protocol stacks, filing systems, Japanese
language processing, eTRON-specified
security software, a GUI, and audio
processing. Other middleware will soon be
added to support speech recognition, MP3, and
digital watermarks. The platform has also
attracted support from American software
makers. Sun Micro systems ported Java to T-
Engine, MontaVista did the same with its real-
time version of Linux, and Microsoft followed
suit by porting Windows CE to T-Engine. The
ports are referred to as non-native kernel
extensions or, informally, as “guest operating
systems.”

Tags Everywhere
The UID Center provides the infra-

structure for managing electronic tags
embedded in or attached to objects in a
ubiquitous environment. The center developed
the ucode, a multicode tag that automatically
identifies information stored in bar codes,
RFID chips, smart cards, and electronic tags
embedded in virtual entities such as software
and electronic money. Comparable to the
ISBN (International Standard Book
Numbering) code used in the publishing
industry, the UID Center assigns unique
numbers to each tag and stores data relating to
the object in database servers. The ucode tags
use a 128-bit code that can be extended in 128-
bit units, creating a virtually limitless string of
numbers.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 70

The UID Center is conducting verification
tests of the technology in several industries,
among them transportation, housing,
agriculture, and health care. Earlier this year,
Japanese farmers, wholesalers, and retailers
implemented a food traceability scheme using
T-Engine’s UID technology. Interest in the
technology has increased in recent years, in
part due to concerns about mad cow disease,
bird flu, and the mislabeling of food items.
UID technology lets retailers and consumers
trace every phase of the production process. A
tag on a packet of soybeans provides
information about where the beans were
grown, what chemicals were used, and when.

To navigate this tagged environment, the
UID Center developed the Ubiquitous
Communicator, a PDA-like device that reads
ucode tags and retrieves the relevant data from
the UID Center’s server database. The standard
UC has a host of features, including wireless
LAN, Voice over Internet Protocol, infrared
data communication, and a biometric reader.
Apart from the PDA-like version, the UID
Center developed a cell phone model and a
watch style. All are built with standard T-
Engine boards.

The multifunctional UC anticipates an
environment in which electronic tags are
embedded in every conceivable object. In a
restaurant, the UC might read a tag attached to
a menu and display today’s through insecure
network channels, including the Internet.
eTRON has a flexible cryptographic
architecture and an ID protection protocol to
prevent third parties from tracking the tag
owner’s activities.

Ubiquitous Communicators

A Ubiquitous Communicator (UC) is a new
kind of terminal for providing information that
is completely different from a PC or PDA. The
greatest feature of the UC is its use as a tool
for people to communicate with a Ubiquitous

computing environment, which is why we call
it a "Ubiquitous Communicator."

There are three kinds of communication:
communication with physical objects,
communication with people, and
communication with the environment. When
communicating with physical objects, the UC
acquires information about the physical objects
by communicating with an ultra tiny chip and
others attached to each physical object in the
user's environment. Communicating with
people is, just as the term suggests,
communication between people using UCs as
mobile phones or VoIP. Communicating with
the environment is when the UC gathers
information via a computer network installed
as LAN or in appliances. The UC then
becomes aware of the environment or
conditions of a given space and controls the
facilities or appliances [5].

Ubiquitous Security – eTRON

eTRON (entity TRON) is a wide-area

distributed system architecture designed to
securely store and distribute "information"
which plays a central role in a computerized
society on a digital information infrastructure.
Important and valuable information in modern
society includes money, various certificates,
tickets and keys. To maintain their
effectiveness as valuable information, it is
required to assure sufficient resistance to
forgery, reproduction and modification with
physical protection measures, such as special
quality of paper and ink and sophisticated
manufacturing and printing technologies.

eTRON realizes special digital information
which has properties that are made possible
with these physical entities, such as unity,
difficulty of manufacturing, unreproducible,
difficulty of falsification and portability, and

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 71

this digital information is called "Electronic
entity". Electronic entities are stored only in
tamper-resistant hardware devices, called
"eTRON devices", and transmitted only
between these eTRON devices. In addition,
security of information transmitted via such
communications is firmly protected with
cryptographic technologies. In this way,
eTRON provides a versatile framework to
prevent or detect reproduction, eavesdropping
and modification of electronic entities and to
securely handle a wide range of valuable
information.

For eTRON, various types of eTRON devices
are available according to applications.
eTRON/8 card is an eTRON device card
equipped with an 8 bit micro controller, and a
contactless interface compliant with the
ISO/IEC 14443, and operates with a weak
induced current without external power supply.
On the other hand, the currently implemented
eTRON/16 chip, which uses a 16 bit micro
controller, is a dual-interface eTRON device
that is equipped with both contact
communication interface compliant with the
ISO/IEC7816 and contactless interface
compliant with the ISO/IEC 14443.

An eTRON/16 chip is designed on the
assumption that it is embedded into various
computer nodes, such as T-Engine, and is
equipped with complex instruction to support
many types of applications that handle
electronic entities described above. One of the
implementation examples is a SIM card.

Sensor Network
In a ubiquitous society, a sensor network is

one of the services that makes "Context
Awareness" possible. Specifically, a sensor
network is a network in which nT-Engines and
pT-Engines connected to various sensors
provide environment information, collected
from each sensor, to UCs (Ubiquitous
Communicators), other nT-Engines and pT-
Engines. It also enables control of actuators
connected to nT-Engines and pT-Engines
based on the environment information.

nT-Engine is a node that is connected to a
sensor to collect environment information and
controls the environment to enable a
comfortable (optimum) condition based on this
information. As nT-Engine is required to
function as a sensor node or actuator node, it is
equipped with various interfaces. The
prototype nT-Engine that was made by the
YRP Ubiquitous Networking Laboratory this
time is equipped with serial, versatile I/O, AD,
DA, PWM, various timers, interruption, and
DMX (lighting control) interfaces. UNP
(Ubiquitous Network Protocol) was newly
developed as a network protocol and
implemented on nT-Engine. UNP is a protocol
for collecting information and controlling
devices under an ubiquitous environment.
UNPs form a protocol stack. UNP is a protocol
appropriate for the Ubiquitous era, supporting
the automatic network establishment function
and network security function. nT-Engine can
be applied to lighting, air conditioning, door
and blind control within houses, building
management systems, auto body-related
systems, expressway-related systems, etc.

pT-Engine is an ultra-tiny active wireless

node in a ubiquitous society equipped with
power supply, a micro computer, and various
sensors. By attaching pT-Engines to various
physical objects and environments, the sensors
and microcomputers in the pT-Engines
continuously collect information on the
environment and store it internally.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 72

Furthermore, nT-Engines that function as a
single base station and 1000 node pT-Engines
can communicate with each other to use
information on the environment from a sensor
network of nT-Engines. pT-Engine enables
control of secure communications and secure
information with eTRON identification and by
encrypting and processing stored information.
The prototype pT-Engine that was made by the
YRP Ubiquitous Networking Laboratory this
time adopts the low power wireless
communication method, but in the future, we
are thinking about adopting the UWB (Ultra
Wide Band) communication method that
enables high-precision positioning, which will
make it possible to relate position information
acquired with three-point measurements using
multiple nT-Engine base stations, and
information on environments, such as
temperatures.

TRON House
TRON Project Leader Ken Sakamura, in

cooperation with Toyota Home K.K., has
designed and developed a new intelligent home
based on TRON and other leading edge
technologies. Called "Toyota Dream House
PAPI," this new intelligent home is designed to
reflect the ubiquitous computing technologies
that will be available for intelligent home
construction in the year 2010 [6].

The main goals of this project were to
design and realize an environmentally friendly,
energy saving intelligent house design in
which the latest ubiquitous network computing
technologies created by the T-Engine project
could be tested and further developed. This is
important to keep in mind, because the natural
tendency among some members of the press is
to heap criticism on a house like this as too
expensive, too impractical, or too intrusive to
be sold in Japan. Not everything developed in
Toyota Dream House PAPI is going to be
incorporated into everyone's house in the
future.

In Toyota Dream House PAPI, the already
established concept of the home theater has
been developed one step further. This home
theater knows where the human occupants are
and adjusts the lighting and sound to their
locations and preferences. If any changes have
to be made to any devices in the room, such as
the air conditioning or the ventilation, the

Ubiquitous Communicator can easily make
them.

Toyota Dream House PAPI will be
available for viewing by the public in groups
with a maximum of eight persons from March
25 through September 25, 2005.

3.2. Various Middleware

A growing library of middleware is

available for T-Engine. According to the T-
Engine Forum Web site, it includes network
protocol stacks, filing systems, Japanese
language processing, eTRON-specified
security software, a GUI, and audio
processing. Other middleware will soon be
added to support speech recognition, MP3, and
digital watermarks. The platform has also
attracted support from American software
makers. Sun Microsystems ported Java to T-
Engine, MontaVista did the same with its real-
time version of Linux, and Microsoft followed
suit by porting Windows CE to T-Engine. The
ports are referred to as non-native kernel
extensions or, informally, as “guest operating
systems.”

3.3. Growing support

The T-Engine Forum has grown from 22

members when it was founded in 2002 to
nearly 500 members today. Among them are
nearly all of Japan’s blue chip companies and a
growing number of global tech giants such as
Sony, Toyota, Microsoft, and IBM. The Forum
has development centers in China, Korea, and
Singapore.

3.4. Multilingual environment

One of the beneficiaries of growing

support for T-Engine is Personal Media Corp.,
producer of T-Engine development kits and a
long-time developer of TRON products. In the
1990s, PMC developed Cho Kanji, a
multilingual environment that supports
Japanese, Chinese, Korean, and about 40 other
languages. Cho Kanji is an alternative for
Unicode. The latter uses four-byte encoding
for pictographic characters. Cho Kanji uses
two-byte encoding, a considerable advantage
in network environments and when using

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 73

devices with limited memory. Cho Kanji
currently supports approximately 170,000
characters, which can be used inside the
application and in file names.

4. EMBEDDED APPLICATION
DEVELOPMENT

4.1. Categories of Software to be
developed

The software to be developed can be

classified broadly into three categories, which
differ in development method, program object
format and other ways [7].

• Monitor-based software (Programs
that run on T-Monitor)

Software that does not use T-Kernel
functions, running directly on hardware in a
non-MMU environment and loaded into
memory and run by T-Monitor. In T-Monitor,
a program load and execute function is
furnished as a debug function. By utilizing
this, one can run programs on top of T-
Monitor.

However, basically, one cannot utilize
other system functions, such as T-Kernel and
devices drivers, from programs that run on T-
Monitor. Accordingly, programs that run on
top of T-Monitor are mainly used for things
like testing hardware and debugging, and they
are not appropriate for regular applications

• T-Kernel-based software (Programs

that run on T-Kernel)
These programs are the basic form of user

applications that we run on T-Engine, and they
are also the closest in form to the conventional
embedded programs that used ITRON. User
applications consist of one or multiple tasks,
and we can use T-Kernel system calls from
each task. A device driver or other T-Kernel-
based software runs in an environment using
an MMU, as a resident program in system
memory space.

System space is the addressable memory
space from 0x40000000 to 0x7fffffff.

After using the CLI recv command to save
the program as a file to the work disk, the
program is loaded and run using the CLI or
IMS lodspg command. When the program is

finished running, it continues to occupy the
memory area. The memory must be freed using
the unlspg command.

When a program is loaded, relocation takes
place automatically. The actual address to
which it is loaded is displayed by the lodspg
command, and can be confirmed by the CLI
ref spg command.

• Process-based software (Programs

that run on Extensions)
User applications that run on top of T-

Kernel Extensions differ greatly from user
applications that run on top of T-Kernel.

User applications on T-Kernel Standard
Extension run in terms of units called
processes, and they can utilize system calls that
the extension provides rather than T-Kernel
system calls. Among the system calls the
extension provides, there are things such as
process control, file control, and interprocess
communication.

Process-based software runs as an ordinary
application in an environment using an MMU,
and is loaded into local memory space.

Local space is the addressable memory
space from 0x00000000 to 0x10000000.

After using the CLI recv command to save
the program as a file to the work disk, the
program is loaded and run using the CLI or
IMS program run command.

Process-based software runs at the user-
level protection level and therefore cannot
make direct use of T-Kernel functions, nor
can it access I/O space directly.

What forms the core of T-Kernel is T-

Kernel/OS. Functions that correspond to
ITRON are mainly under the charge of T-
Kernel/OS. In the programming of applications
that run on T-Kernel, what one first must
understand is this T-Kernel/OS.

What T-Kernel/SM provides are extended
functions in T-Kernel that did not exist in
ITRON. In cases when we embed in a system
middleware on T-Kernel, it is necessary for
one to understand T-Kernel/SM.

What T-Kernel/DS provides are functions
for development tools, such as debuggers.
Accordingly, it is not necessary to be
conscious of T-Kernel/DS in carrying out
normal programming.

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 74

4.2. Preparations for Program
Development

- A T-Engine development kit, use the
products of Personal Media Corporation,
assuming that the reader is using standard
T-Engine.

- Prepare a Linux PC
- Install the development environment in the

Linux PC and set the environment
variables

- Connect the Linux PC to T-Engine
- Create a work disk to be used with T-

Engine
- Write program, compile and build
- Download and execute program on T-

Engine kit, debug if needed.

4.3. The Structure of a Program that Runs
on T-Engine

The structure of the main function is

basically as follows:

EXPORT ER main(INT ac, UB *AV[])
{
if(ac<0)
{ /*call at the time of unlspg*/

Program termination
processing

}
else
{ /*call at the time of lodspg*/

Program startup processing
}
return 0;
}

4.4. T-Engine Development Kit – An Open
Development Platform for Embedded
Systems

The T-Engine Development Kit has been

released by Personal Media Corporation
(PMC) as the first commercialized product of
the T-Engine specification. T-Engine has been
placed in the spotlight as the super
development platform for ubiquitous
computing. The T-Engine Development Kit is
comprised of a T-Engine CPU board, a real-
time operating system (called T-Kernel),
specifications and other documentation on CD-
ROM, as well as a PC-based Linux
development environment [8].

PMC T-Shell development kit
PMC T-Shell development kit is

middleware for T-Engine that enables
provision of a GUI system with rich character
support. It includes screen drawing functions,
GUI parts, a windowing system and other GUI
functions, as well as kana-kanji transform,
TrueType fonts with more than 170,000
characters, and a TCP/IP manager. It can be
used to develop GUI-based applications
quickly and easily. Moreover, it comes with
the visual language MicroScript to be run on
T-Engine with little or no modification.

4.5. WideStudio for T-Engine

WideStudio is an open source, Integrated

Development Environment for desktop
applications purely made in Japan. This
enables you to develop GUI applications that
can run on Windows95/98/Me/NT/2000/Xp,
WindowsCE, Linux, FreeBSD, SOLARIS,
MacOSX(w/X11), BTRON, T-Engine, mu-
CLinux(wo/X11) in various programming
languages such as C/C++, Java, Perl, Ruby,
Python, Objective Caml.

Since an application is build on MWT
(Multi-Platform Widget Toolkit) which runs
on multiple platforms, WideStudio
applications are all source compatible between
these platforms. If you developed an
application in C/C++ language, you only need
to re-compile the source code to run on a
different platform in as native code [9].

WideStudio for T-Engine is one of
WideStudio Suite that enables you to develop a
desktop application on T-Engine. WideStudio
for T-Engine offers the following features to
develop T-Engine applications:
• Generate T-Engine native binaries that

runs much faster
• Source codes can be shared among other

platforms.
WideStudio for T-Engine uses Linux or

Windows Operating Systems as its
development environment for T-Engine
applications. Applications developed on Linux
or Windows are transmitted to T-Engine to run
or for debugging.

Required software is show below:

Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT

 75

• (For Linux) Compilers such as gcc/g++
• Your favorite editor to edit source codes
• T-Kernel Development Kit (from Personal

Media Co.)
• T-Shell Development Kit (from Personal

Media Co.) *As required*
Also, gcc compiler for T-Engine come

with T-Kernel development kit is required for
both Linux/Window.

5. SOME SMALL EMBEDDED
APPLICATIONS

- Calculator: a simple calculator can do

most common functions (add, subtract,
multiply, and divide integer or floating point
numbers). It uses touch screen to input
numbers and displays result on LCD.

- Snake: snake-hunting game like one in
cell-phone.

- Image viewer: can view images (in BMP,
JPEG, GIF format) on LCD. Images can be
stored on USB flash disk or CF card.

- Watch: emulate a sport watch,
- Drawsamp: users can use touch screen to

draw anything on LCD.

6. CONCLUSION

T-Engine will be an important technology

and platform in the world of embedded
systems. By now, several computer vendors
have released more than ten hardware systems
based on T-Engine specification. Upon these,

software vendor companies are developing
major middleware components for embedded
systems.

T-Engine also enjoys growing support in
other East Asian countries. For instance,
Renesas Technology Corp., Nanyang
Technological University, and the Singapore
government co-founded Singapore’s T-Engine
Application Development Center (TEADEC),
which provides English and Chinese tutorials
for T- Engine development. TEADEC also
supplies low-cost training material to training
centers in Thailand, Malaysia, and Vietnam.

REFERENCES
1. The NetBSD Foundation URL:

www.netbsd.org/Misc/embed.html#a1
2. Ken Sakamura & Noboru Koshizuka,

University of Tokyo, “The Open, Real-time
Embedded-Systems Platform”, page 1-3.

3. http://www.t-engine.org/english/whatis.html
4. T-Kernel specification of PMC T-Engine

development kit.
5. TRON Show 2005 Report:

http://www.tron.org/tronshow/2006-
e/ts2005-03-01.html

6. Toyota Dream House PAPI:
http://tronweb.super-
nova.co.jp/toyotadreamhousepapi.html

7. T-Engine programming appeared on pages
17-25 in Vol. 81 of TRONWARE.

8. http://www.personal-
media.co.jp/te/en/tekit.html

9. http://www.widestudio.org/EE/

