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ABSTRACT 
 

In this paper, an adaptive controller is proposed and applied to two-wheeled welding mobile robot 
to track a smooth curved welding path. The mobile robot is considered in terms of dynamics model in 
Cartesian coordinates with unknown parameters such as moment of inertia, wheel radius and distance 
from the center of the platform to a rear wheel of the mobile robot. The system is considered with the 
nonholonomic constraints in relation with its coordinates and the reference welding path. To obtain the 
controller, the tracking errors are defined, and the controller is derived based on backstepping 
technique to guarantee that the tracking errors converge to zero asymptotically. In the proposed 
controller, the unknown parameters are estimated using update laws in adaptive control scheme. To 
obtain the tracking errors, a simple measurement scheme using touch sensor is proposed. The touch 
sensor consists of two potentiometers including one linear potentiometer for measuring distance error, 
and one rotating potentiometer for measuring angular error. To implement the experiment, a control 
system is developed based on the integration of three PIC18F452’s: two for servo DC motor 
controllers, and one for main controller. The two servo controllers can perform indirect servo control 
using one encoder. The main controller which functions as master links to the three servo controllers, 
as slave, via I2C communication. Also, the simulation and experimental results are included to 
illustrate the performance of the proposed controller. 

 
 

1. INTRODUCTION 
 
Automatic control of welding process is widely 

used in many branches of industry such as building 
construction, pipelines, aircraft, ship fabrication, 
automobiles, etc. And one of the most complex 
applications is welding systems based on mobile 
robots that can give several benefits: generating a 
perfect welding movement and producing a consistent 
weld penetration and weld strength. 

Mobile robot under nonholonomic constraints has 
been attracted much attention of many researchers in 
literature. Fierro, 1995, developed a combined 
kinematic and torque control law using backstepping 
approach, and the asymptotic stability is guaranteed 
by Lyapunov [3]. In this design, the parameters of the 
mobile robot are necessary, which is almost 
impossible to obtain exactly in practice: it is needed to 
be estimated. To solve this problem, some adaptive 
feedback controllers have been proposed to solve the 
tracking problem in terms of the dynamics model. T. 
Fukao, 2000, proposed the integration of a kinematic 
controller and a torque controller for the dynamic 

model of a nonholonomic mobile robot. In this design, 
a kinematics adaptive tracking controller is proposed, 
and then a torque adaptive controller with unknown 
parameters is derived using the kinematic controller 
[1]. T. H. Bui et al., 2003, proposed the adaptive 
nonlinear controller for two-wheeled welding mobile 
robot tracking a smooth-curved welding path using 
Lyapunov function candidate with the unknown 
parameter of moment of inertia [2]. He also proposed 
the adaptive nonlinear controller for two-wheeled 
welding mobile robot tracking a smooth-curved 
welding path using Lyapunov function candidate with 
the unknown parameter such as wheel radius and 
distance from the center of the platform to a rear 
wheel of the mobile robot [2]. However, he considered 
two adaptive controllers to be separated. He also 
consider fixed torch and controllable torch. In the 
fixed torch, all tracking errors goes to zero very 
slowly as time goes to infinity. To solve this problem, 
he considered the controllable torch. In this case, one 
control system is needed to control the torch. 

This paper proposed a modified controller of the 
kinematic controller reported by Bui and the adaptive 



 

 

controller for two-wheeled welding mobile robot to 
track a smooth-curved welding path even in the model 
of the dynamical system containing constant unknown 
parameters such as such as moment of inertia, wheel 
radius and distance from the center of the platform to 
a rear wheel of the mobile robot. These controllers are 
derived based on backstepping technique. The 
stability is proven using the Lyapunov method. To 
design the tracking controller, the errors are defined 
between the welding point on torch and the reference 
point moving at a specified constant speed on welding 
path. To realize the above controllers, a simple way 
for sensing the tracking errors using potentiometers is 
introduced. To implement the experiment, a control 
system is developed based on the integration of three 
PIC18F452’s: two for servo DC motor controllers, and 
one for main controller. The two servo controllers can 
perform indirect servo control using one encoder. The 
main controller which functions as master links to the 
three servo controllers, as slave, via I2C 
communication. Additionally, the simulation and 
experimental results have been done to show the 
effectiveness of the proposed controller. 

 
 

2. DYNAMIC MODEL OF WMR 
 
In this section, the dynamic of two-wheeled 

welding mobile robot is considered with the 
nonholonomic constraints in relation with its 
coordinates and the reference welding path. 

It is observable that the welding point is away from 
the WMR’s center; consequently, this makes tracking 
error which is perpendicular to the mobile robot 
motion slow to converge. Therefore, the welding 
mobile robot used in this paper is of two-wheel 
mobile robot with some modifications on mechanical 
structure for welding application (Fig. 1). Therefore, 
the welding mobile robot was designed to have two 
motions of left and right driving wheels with fixed 
torch in this paper. 
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Fig. 1 WMR configuration 

 
The model of two-wheeled welding mobile robot is 

shown in Fig. 2. The posture of the mobile robot can 
be described by three generalized coordinates: 

 
[ ]Tyxq φ=                     (1) 

 
where, ),( yx is Cartesian coordinates of the 

WMR’s center and φ  is the heading angle of the 
WMR   

Also it is chosen the internal state variables as 
follows 

 
[ ]Tvz ω=                       (2) 

 
It is assumed that the wheels roll and do not slip, 

that is, the robot can only move in the direction 
normal to the axis of the driving wheels. Analytically, 
the mobile base satisfies the conditions as the 
following 

 
0sincos =− φφ xy                (3) 

 
The dynamic model for the above wheeled mobile 

robot is given as follows [8] 
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where )/(11 rmb = , )/(2 rIbb = , and that m and 

I denote the mass and the moment of inertia of the 
mobile robot, respectively. Also, 211 TTu +=  and 

212 TTu −= are the control inputs, and λ  is the 
Lagrange multiplier, given 
by )sincos( φφφλ yxm +−= . The assumption that 
the signs of 1b and 2b are known is practical since 

1b and 2b represent combinations of the robot’s mass, 
moment of inertia, wheel radius, and distance between 
the rear wheels constant with known signs. 

First, the kinematic equations of the WMR in the 
Cartesian space corresponding to are set up as the 
following 
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The relationship between ω  and the angular 

velocities of two driving wheels is the following 
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where lwrw ωω ,  represent the angular velocities 

of right and left wheels, b  is distance from WMR’s 
center point to the driving wheel, r  is the radius of 
wheel.  

Second, the welding point ),( ww yxW  on torch 
and its orientation angle wφ can be derived from 
WMR’s center ),( yxC as 
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where l  is the length of torch 
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Fig. 2 Scheme for deriving WMR kinematic 

equations 
 
The derivative of (7) yields 
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It is assumed that a reference point ),( rr yxR on 

the reference path moving at the constant velocity of 
0>rv  with the orientation angle rφ  for all t . It is 

also assumed that the reference angular velocity rω  is 
the rate of angular change of rv , bounded and have 
bounded derivative for all t . The dynamic equation is 
shown below 
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where rφ  is defined as the angle between rv  

and x  axis.  
 
 

3. TRACKING CONTROLLER DESIGN 
 
The scheme of errors are shown in Fig. 2, and the 

tracking errors Teee ],,[ 321=e are defined as the 
following 
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Since 0=l  for the fixed torch, the first 

derivative of errors yields 
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Step 1: Kinematic Controller Design 
 
A kinematic controller is designed to achieve 

0→ie when ∞→t ; in other words, the welding 
point W tracks to the reference point R  at a desired 
welding velocity.  

The Lyapunov function candidate is chosen as 
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The derivative of 1V  becomes 
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(13) 
 
To achieve 01 ≤V , the control law called virtual 

control for the mobile platform is chosen as the 
following: 
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where dv and dω  are considered as its desired 

virtual control variables. 
Substituting (14) into (13) yields the following 
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clearly, 01 ≤V  and the tracking errors 

Teee ],,[ 321=e is bounded along the system’s 
solution. It is also assumed that not only the velocity 
of 0>rv  is constant with the orientation 
angle rφ but also the reference angular velocity rω is 
bounded and have its bounded derivative for all t in 
case of the welding mobile robot used in this paper, 
using Eqs. (11) and (15), it is shown that e and 

e are bounded, so that ∞<1V , i.e., 1V is uniformly 

continuous. Since ( )tV1  does not increases and 
converges to some constant value, by Barbalat’s 
lemma, 01 →V  as ∞→t . As ∞→t , the limit of  
Eq. (15) becomes 

 2
33

2
1410 eKeKK +=          (16) 

Eq. (16) implies that [ ] 031 →Tee  as ∞→t .  

From Eq. (22), the derivative of error 3e  is given: 
 ωω −= re3            (17) 
Substituting ω  in Eq. (17) by the auxiliary 

control input dω  (Eq. (14)), the following is yielded: 

 33223 sinekveke r −−=        (18) 
Since 03 →e  as ∞→t , the limit of Eq. (18) 

yields 
 rveke 223 −=            (19) 
Since equation 3

2evr  has the limit equal to zero 
when ∞→t , the derivative of this equation yields 

 ( ) 2
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23
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2

3 evr  is uniformly continuous since its time 
derivative is bounded. From Barbalat’s Lemma, 

( )3
2ev

dt
d

r  tends to zero. Therefore, 2
3evr  tends to zero, 

and thus 2evr  tends to zero. Because the velocity of 

rv is constant, 02 →e  as ∞→t  from Eq. (20). 
Hence, the equilibrium point 0=e is uniformly 
asymptotically stable. 

 
 
Step 2: Adaptive Control Design  
 
v  and ω  are considered as virtual control 

variables for the mobile robot. The control objective is 
that the trajectory tracking error e converges to zero 
asymptotically   and v , ω  converge to dv , dω , 
respectively even in the presence of unknown 
parameters in the model of the dynamic system. To 
solve the above problem, v~ and ω~  are defined as 
virtual control errors: 
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Total error vector is defined as  
 

Tveee ]~,~,,,[ 321 ω=ε                 (22) 
 
The time derivative of the virtual control error can 

be derived as follows: 
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Proof. 
From the nonholonomic constraint (3), the 

derivative of v is 
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where 0/1 21 ≠== rmbβ  and 

0/1 22 ≠==
b
rIbβ . From Eqs. (13), (14) and (21), 

the derivative of 1V  is 
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where 1k , 2k and 3k  are positive constants. 
To obtain the dynamic mobile platform control law, 

a nonlinear feedback control mnRu −∈ must be 
designed so that dvv →  as ∞→t . It cannot be 
guaranteed that Eq. (26) has always negative value 
due to v~  and ω~ . 

Consider the new Lyapunov function candidate 
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The time derivative of 2V  is 
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To achieve 02 ≤V , the following adaptive control 

law is chosen as: 
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where 121 ,, γcc , and 2γ  are positive constant 

and 1̂β is an estimate of 1β and 2β̂ is an estimate of 

2β . 

Since 2V is lower bounded and 2V is negative 
semi-definite, 2V  converges to a finite limit. 

Also, 2V 1321
ˆ,~,~,,, βωveee , and 2β̂ are all bounded. 
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Furthermore, the second derivative of 2V  can be 

written as 
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With the assumption that rv , rω and their 

derivatives are bounded and from the above results, 

2V  is bounded, that is, 2V is uniformly continuous. 
Since )(2 tV is differentiable and converges to some 

constant value and that 2V is bounded, by Barbalat’s 
lemma, 0)(2 →tV  as ∞→t . This, in turn, implies 
that ,~,, 31 vee and ω~  converge to zero.  Then 

02 →e  when ∞→t  as the same way of 

kinematic controller. 21
~,~ ββ  converge to constant 

values because 21
ˆ,ˆ ββ  converge to some constant 

values when ∞→t  from (30) and 21,ββ  are 
unknown constant values. 

 



 

 

4. MEASUREMENT OF THE ERRORS 
 
In this paper, the controller is derived from 

measurement of the tracking errors 321 ,, eee . The 
errors measurement scheme is described in Fig. 3: the 
two rollers are placed at 1O  and 2O . The roller at 1O  
is used to specify the two errors 1e and 2e and the 
other, error 3e . The distance between the two rollers 

21OO  is chosen according to the curve radius of the 
reference welding path at the contact ),( rr yxR  such 

as 21// OOvr . The rollers’ diameter is chosen small 
enough to overcome the friction force. 
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Fig. 3 Scheme for measuring the errors 

 
From Fig. 3, the relationships are as follows: 
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where sr  is the radius of roller, and sl  is the 

length of sensor. And the two potentiometers are used 
for measuring the errors: one linear potentiometer for 
measuring )( lls −  and one rotating potentiometer, 

the angular between X coordinate of WMR and rv . 

5. THE EXPERIMENT DEVELOPMENT AND 
SIMULATION RESULTS  

 
5.1 The experiment development 
 

The control system was modularized on function to 
perform special control. The control system is based 
on the integration of three PIC18F452’s: two for servo 
DC motor controllers, and one for main controller. 
The two servo controllers can perform indirect servo 
control using one encoder. The main controller which 
functions as master links to the two servo controllers, 
as slave, via I2C communication. The two A/D ports 
on master are connected to the two potentiometers for 
sensing the errors, as mentioned in section 4. The total 
configuration of the control system is shown in Fig. 4. 

For operation, the main controller receives signals 
from sensors to achieve the errors, then the control 
laws are rendered based on the errors for the sampling 
time of 10ms, and send the results commands to the 
two servo controllers via I2C, respectively. The 
controller of the system is shown in Fig. 5. 
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Fig. 4 The configuration of the control system 
 

 
 

Fig. 5 The controller of the system 
 
The experimental welding mobile robot is shown 

in Photo. 1. 



 

 

 

 
 

Photo. 1 The experimental welding mobile robot 
 

5.2 The simulation results 
 

To verify the effectiveness of the proposed 
controller, simulations have been done with adaptive 
controller (29) with a defined reference smooth 
curved welding path (Fig. 6).  

 
Table 1. The initial values for the simulation 

Parameters Values Unit 
rx  0.28 m 
wx  0.270 m 
ry  0.4 m 
wy  0.390 m 

φ r 20 deg. 
wφ  0 rad/s 

v  0 m/s 
ω  0 rad/s 
l  0.24 m 

 
The const parameters are chosen as 10021 == cc , 

1021 == γγ and mb 25.0= . The robot’s dynamic 
parameters are chosen as 5.021 == bb , which are 
assumed to be unknown but known signs. The WMR’s 
initial values for the simulation are given in Table 1. 
The welding speed is 7.5 mm/s. 

The simulation and experimental results are given 
through Figs. 7-19. In Fig. 7, it can be seen that the 
errors go to zeros after 5 seconds due to the motion of 
the fixed torch. Figs. 8-10 show nonfiltered data(a) 
and filtered data of tracking errors for experimental 
results. It is shown that the experimental data are 
bounded around simulation data. The filtered data is 
smoother than the nonfiltered data. 

 The two estimation values 1̂β and 2β̂ are given in 
Figs. 11 and 12. The virtual linear velocity input 

dv for kinematic controller and  real linear velocity 

v  for dynamic controller are shown in Fig. 13 for 
kinematic controller. The virtual angular velocity 
input dω for kinematic controller and real angular 
velocity ω  for dynamic controller are shown in Fig. 
14 for kinematic controller. The error of virtual 
velocity control error v~ andω~  approaches zero in Fig. 
15 after 3 seconds. Fig. 16 show control inputs 1u and 

2u . Fig. 17 shows torques 1T  and 2T of right and left 
wheels of MWR, respectively. Fig. 18 shows wheel 
velocities(rpm) of right and left wheels of MWR The 
posture and the welding trajectory are shown in Fig. 
193. 
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Fig.7 Tracking errors 
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Fig. 11 Estimation of 1β  
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Fig. 12 Estimation of 2β  
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Fig. 13 Linear velocity of WMR 
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Fig. 14 Angular velocity of WMR 
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Fig. 15 Virtual velocity control errors 
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Fig. 16 Control inputs 
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Fig. 17 Torque 
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Fig. 19 WMR’s movement tracking reference 

welding path 
 
 

6. CONCLUSIONS 
  
In this paper, an adaptive controller is proposed for 

welding mobile robot with unknown parameters such 
as mass, moment of inertia, wheel radius and length of 
the mobile platform to track smooth curved welding 
path. The controller is designed based on 
backstepping method using Lyapunov function. The 
mobile robot was considered in kinematic and 
dynamic models with unknown parameters of mass, 
moment of inertia, wheel radius and length of the 
mobile platform. To design the controller, an error 
configuration is defined. And then, a simple way of 
measuring the errors for deriving the control law using 
two potentiometers was proposed. The simulation 
experimental results show that the controller is 
possible and applicable in the practical welding 
mobile robot. This control system of the proposed 
controller is simpler than the that proposed by Bui. 
three PIC18F452’s for this controller and four 
PIC16F877’s for Bui’s controller are needed because 
one PIC for controlling torch slider in this proposed 
control system is not needed. 
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