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ABSTRACT 
 

The traditional Newmark scheme presents deficiencies in the energy conservation and hence a 
numerical instability might occur when this time-stepping scheme is applied to non-linear transient 
problems. In order to enhance the stability properties of this implicit time integrator, a simple 
modification to the Newmark formulas by adding a scalar factor such that errors are compensated in 
the energy balance. 

Recently, toward an efficient temporal integrator, numerical experiments on the performance of 
the modified scheme is still required. In this paper, the modified Newmark scheme will be extended to 
dealing with highly non-linear problems such as those involved in large strain or contact/impact 
problems. The numerical implementation, using a finite element discretization in time and space for 
hyperelastic material models, verifies the performance of the scheme. 
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1. Introduction 

 
Due to its simplicity, the implicit Newmark 
method is widely used time-stepping algorithm 
in nonlinear structural analysis. However, the 
use of the Newmark method might experience a 
numerical instability when applied to non-linear 
dynamics problems [4]. Besides the lack of the 
conservation of the total energy, the Newmark 
algorithm is also known to loose its numerical 
dissipation character in the nonlinear regime [1].  
 
In the past, using a strategy, in which the 
discrete energy balance is enforced, Shanshin 
Chen et al [7] modified the implicit Newmark 
scheme to retain unconditional stability in 
multibody dynamics system analysis. This is 
contrast to another scheme previously presented 
Xie et al [4], where the Newmark update is 
directly embedded in the equation of energy 
balance.  
 
An alternative strategy to retain unconditional 
stability in nonlinear region was presented by 
Bui Q.V et al [5] and denoted as the modified 
Newmark scheme. It’s modification based on 
the adding a scalar factor to the Newmark 
scheme, the energy conservation is attained for 

non-linear problems, hence, the unconditional 
stability of the scheme is thereby more 
guaranteed. This factor is obviously dependent 
upon the combined level of energy, forces and 
displacement at each time step. Moreover, an 
another modification for filtering spurious high 
frequency modes of oscillation in the numerical 
response but imply the strictly decay of the 
system total mechanical energy at each time 
step, meaning that unconditional stability is 
achieved in the nonlinear regime. 
 
However, this modified Newmark scheme has 
been successfully applied to N-particles systems 
as well as one-dimensional bar systems [5]. In 
the presented study, the modified Newmark 
scheme will be applied to non-linear large strain 
or contact/impact problems. Therefore, the 
algorithmic framework of the scheme will be 
summarized briefly. Algorithmic modifications 
will be explained in the context of the 
isoparametric 2D element. 

 
2. Semidiscrete initial value problem 
The initial boundary value problem of non-
linear elastodynamics is described by the 
Cauchy equation of motion, initial values of the 
displacements and the velocities and boundary 
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values of Neumann and Dirichlet type. The 
weak formulation, the spatial discretization by 
finite elements and the inclusion of viscous 
damping result in the semidiscrete equation of 
motion and the corresponding discrete initial 
values. 
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Herein, M represents the constant mass matrix, 
C, the constant viscous damping matrix, F, the 
deformation dependent internal forces, R, the 
external forces, d, the vector of the structural 
displacements, , the velocities, , the 
accelerations and , , initial values, 

respectively. Consequently, , the inertia 
forces and , the viscous damping forces of 
the non-linear dynamical system. In this study, 
the damping matrix is assumed to be a linear 
combination of the mass M and the elastic 
stiffness K

d& d&&

0d& 0d&&

dM &&

dC &

e = Km(q = 0) matrices, called 
proportional or Rayleigh damping (see e.g.[3]), 
C = α1M + α2Ke

 .  
 

3. Time discretization 
 
As the basis for the integration of the 
semidiscrete initial value problem (1), the time 
interval of interest [0; T] is partitioned in typical 
time intervals [tn , tn+1] with the corresponding 
time step  ∆t = tn+1 - tn . Assuming determined 
state variables ; ;  at the time tnd nd& nd&& n and 
prescribed external forces R(t) for all t ∈[0,T] 
the integration of Eq. (1) is restricted to the 
successive solution of the state variables at the 
end of each step ; ; . 1+nd 1+nd& 1+nd&&

 
3.1 Newmark family 

 
Let β and α be real numbers, 

1¡Ü¡Ü0,¡Ü¡Ü0 2
1 γβ . The Newmark time 

stepping scheme is usually written in the 
following way [3]. 
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Choosing β=0.25 and γ=0.5 leads to average 
constant acceleration scheme : 
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This scheme is proved to preserve the total 
energy for linear structural dynamic system [3]. 
It also exhibits a second order of accuracy. 
When a parameter α>0  is chosen so that: 

αγ += 2
1  and ( )2

4
1 1 αβ += , the scheme (4) 

becomes the α-dissipative Newmark algorithm. 
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If the parameters are chosen α∈(0, ⅓), the result 
is proved to feature the numerical dissipation 
and unconditional stability in the linear regime 
[3]. However, it  might instability in non-linear 
regime, Crisfield et al. [2] have shown that they 
do not guarantee the dissipation of energy for all 
time integration parameters  leading to stable 
time integration in the linear range.   
 
3.2 Implicit Modified conservative Newmark 
Algorithm 
 
In order to retain the energy balance in the non-
linear regime, the scalar  number σ that find 
from enforcing the energy balance through an 
additional term ( nnerr qqF + )= +1σ  in the 
integration of forces at each time step.  
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Herein, Vn , Vn+1  are the potential energy and Fn, 
Fn+1 are the internal force corresponding to the 
moments tn+1, tn. Moreover, the modification is 
not altered the convergence order of the original 
Newmark method [5]. The time-stepping 
scheme (4) becomes the Modified conservative 
Newmark scheme as follow:  
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Besides the scalar number σ that is employed 
for the conservation, a parameter χ>0 is 
introduced to controllable numerical dissipation, 
that based on the energy-decaying inequality. As 
a result, unconditional stability is thereby 
automatically achieved in the non-linear regime 
and the time-stepping scheme (5) is modified:  
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4. Spatial discretization by finite element 
formulation 

 
The 4-node isoparametric quadrilateral element 
with linear displacement variation of the 
displacement field within the element.  
 
4.1 Shape functions and nodal variable 
 
The element shape functions are expressed in 
terms of the element coordinates (ξ1,ξ2). The 

spatial coordinates are expressed in terms of the 
shape functions and nodal coordinates by 
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⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

)(
)(

)(
),(
),(

ty
tx

N
ty
tx

I

I
I ξ

ξ
ξ

herein ξ={ξ1 ,ξ2} . Rate-of-deformation and the 
velocity approximation is 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∂

∂
+

∂
∂

∂

∂
∂

∂

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

yI

xI

II

I

I

yx

y

x

xy

yy

xx

v
v

y
N

x
N

y
N

x
N

y
v

x
v

y
v
x

v

D
D
D

0

0

2

                       (10) 

4.2 The internal nodal forces   
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The gradients of the shape functions with 
respect to the spatial coordinates can then be 
computed by   
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The integration is performed over the parent 
domain. For this purpose, we use 

21 ξξξ dadJd =Ω  , where a is the thickness, 
so 
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4.3 Mass matrix   
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We use , where 

 is the determinant of the Jacobian of 
the transformation of the parent element to the 
initial configuration and a

210210 ),( ξξξξξ ddaJd =Ω

),( 21 ξξξJ

0 is the thickness of 
the undeformed element. A lumped, diagonal 
mass matrix can be obtained by apportioning the 
total mass of the element equally among the 4 
nodes. 

5. Numerical validation 
 
5.1 Problem descriptions 

The problem is defined in Fig. 1. It is a bar in 
plan stress state , this bar impacts a rigid wall 
with an initial velocity v0 in vertical direction. 
Due to a zero gap between the contact bodies, 
the only non-linearity of the problem finds its 
origin from the material model. The chosen 
material parameters, the geometry and all 
reference values are given in Table 1.  
 
Fig. 1 also shown the discretization of the bar. 
We distinguish two domains of the 
discretization , namely the upper domain ABCD 
at the impact zone , where 3x10 finite elements 
are located , and lower domain CDEF , where 
3x7 elements discretize the bar. 
 

Problem definition Discretization 

  
Fig. 1: Problem definition and discretization. 

 
Let us consider St. Venant-Kirchhoff material, 
that are considered to be compressible with E 
denotes the material strain tensor and C is 

fourth-order elasticity strain energy density 
function given by   

      ECEC ::
2
1)( =w                                     (15) 

Table 1 
Material parameters and Geometry value 

Young’s modulus :  E = 2100N/cm2
.

Poisson’s ratio      :  ν = 0.3 
Mass density         :  ρ = 8930 kg/m3

L0 = 16.2 cm ; w0 = 1.6 cm 
T0 = 0.1cm ; v0 = 0.227 m/s 
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t = 0 t = 0.85 t = 1.0 
Fig. 2: Some stages  of the bar’s deformation . 

 
The four-node isoparametric elements are 
employed to solve the problem. Fig. 2 shows a 
sequence of deformed configurations 
corresponding to differences of instant  t = 0, 
0.85 and 1s. 

 
5.2 Remarks 
 
(1) It can be observed the large deformation of 
the impact bar. The Fig. 3 shows the evolution 
of the energy of the bar during impact. Clearly, 
with the use of many size of time step h = 0.005 
and h = 0.02, many oscillations of energy are 
observed in the solution predicted by the 
Newmark method. In contrast, the energy is 
constant with the modified Newmark update. 
The Fig. 4 shows the changing between the 
kinetic and internal energy under enforcing 

 



conservative total energy when the modified 
Newmark scheme is employed. In that case, 
without presence of external forces, the energies 
of the system are  under controlled. 
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Fig. 3: Energy evolution of the impact bar with 
the Saint Venant-Kirchhoff material. 
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Fig. 4: Evolution of energies of the impact bar 
using the modified Newmark scheme 

   
(2) Let us investigate the accuracy of the time-
stepping schemes: to reduce the effort of 
calculation but do not alter the nature of the 
problem, we calculate the relative displacement 
error (%) at the end of interval T = 0.5s.  
 
The displacement error of the bar’s tip (point A)  
ed(t) = dapp(t) - dref(t) between the approximate 
solution dapp and reference solution dref is 
recorded. The reference solution is obtained 
with sufficiently small time steps of size h = 
0.0001, where results from different time-
stepping schemes are practical identical.  

The results are governed in table 2. The results 
show the accuracy of the Newmark and 
modified Newmark are seem to be the same. 

 
Table 2 

Displacement error of the tip A 
Modified  
Newmark 

Origin 
Newmark Time 

step Node 4-x Node 4-x 
5.10-4 1.55993 1.55994 

10-3 1.56289 1.56292 
2.5.10-3 1.57396 1.57404 

5.10-3 1.59180 1.59192 
 

Table 3 
Error of displacement (%)of the tip A. 

Time 
step

Ref. 
solution 

Modified 
NMK 

Origin 
NMK 

5.10-4 1.55985 0.0001 0.0001 
10-3 1.55985 0.0020 0.0019 

2.5.10-3 1.55985 0.0091 0.0090 
5.10-3 1.55985 0.0206 0.0205 

 
(3) Due to the presence of high-frequency 
oscillations, in case of using timestep h = 0.005, 
if a damping χ = 0.005 is introduced into the 
system, the total energy is expected to decay. In 
agreement with this argument, the modified 
dissipative Newmark scheme predicts a steady 
decay of energy.  
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Fig. 5 : Decay of energy due to numerical damping 
(χ = 0.005) 
 
In contrast, the traditional α-dissipative 
Newmark and HHT schemes exhibit oscillating 
energy curves with clear rises at the beginning 
and the end (Fig. 5).  

 



 (4) When using time step h = 0.0004, the 
response of velocity component of the tips at 
both ends in the horizontal and vertical 
direction, that given by the Newmark time-
stepping scheme is very noisy (Fig. 7). 
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Fig. 6: Decay of energy due to numerical dam- 
ping (χ = 0.25) 

 
Let us consider alternative approaches of 
smoothing transient responses without resorting 
to numerical dissipation (χ = 0.0).  
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Fig. 7: Speed response of a tip A in x-axis from 
Newmark scheme is very noisy 
 
The use of a large step size h = 0.005 allows to 
smooth out the high frequency modes, yet the 
energy conserving feature of the solution 
remains unaffected (Fig.7-9). This smoothing 

resulted from so-called non-dissipative 
damping.  
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Fig. 8: Horizontal speed responses of tip A of the 
impact bar ( h=0.0004 ). 

 
Zienkiewicz et al. [6] assumed that an accurate 
time integration of forces enables not to 
significantly excite the high-frequency modes 
and this procedure a form of damping in the 
modes if large a time step is used. 
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Fig 9:  Smoothed–out speed response of a tip E  in 
the y-axis with χ = 0. 
 
For modified Newmark scheme, since the 
internal forces are better integrated, the resulting 
time-stepping scheme might hence possess the 
mentioned damping effect as far as the 
algorithm can still maintain key qualitative 
features of low-frequencies responses. However, 

 



because low and high modes are tightly coupled 
in our case so that affection is limited.  
 
Although the responses are still noisy, however, 
we must have use an important amount of 
numerical damping (χ = 0.25) to smooth out 
these responses (Fig. 8-10), hence, the benefit of 
numerical damping in smoothing out dynamic 
responses is obvious , hence, a correct decay of 
the total energy is occurred (Fig. 6).  
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Fig 10:  Smoothed–out the speed response tip E 
with numerical damping(χ = 0.25) 

 
6. Conclusions 
 
The application of the modified Newmark  to 
the nonlinear elastodynamics using the 2D 
isoparametric quadrilateral element with non-
linear hyperelastic material models was 
presented. 
 
Nevertheless, toward an efficient temporal 
integrator and before any attempt can be made 
for a larger system, the performance of the 
modified scheme for 3D solid and 
friction/frictionless contact problems and 

improve the reduction of accuracy when 
numerical damping is introduced in the modified 
Newmark algorithm [5] need be examined in the 
future. 

 
REFERENCES 

 
1. Armero F, Romero I, On the formulation of 
high-frequency dissipative time-stepping 
algorithms for nonlinear dynamics. Part I: low-
order methods for two model problems and 
nonlinear elastodynamics, Computer Methods in 
Applied Mechanics and Engineering, 
2001;190:2603-2649. 
2. Kuhl D, Crisfield A.M, Energy-conserving 
and decaying algorithms in non-linear structural 
dynamics , International journal for numerical 
methods in engineering ,1999; 45: 569-599. 
3. Geradin M, Rixen D, Mechanical vibrations: 
Theory and application to structural dynamics, 
Wiley,1994 
4. Xie YM, Steven GP, Instability,chaos,and 
growth and decay of energy of time stepping 
schemes for non-linear dynamics. 
Communications in Numerical Methods in 
Engineering,1994. 
5. Bui QV, Modified Newmark family for non-
linear dynamic analysis, International Journal 
for Numerical Methods in Engineering, 2004; 
61: 1390-1420. 
6. Zienkiewicz, Wood W L and Taylor R L, An 
alternative single-step algorithm for dynamic 
problems , Earthquake engineering and 
structural dynamics, 1980; 8 :31-40 
7. Shanshin Chen, John M. Hansen and Daniel 
A. Tortorelli , Unconditionally energy stable 
implicit time integration: application to 
multibody system analysis and design , 
International journal for numerical methods in 
engineering; 2000; 48:791.  
 

 

 


