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ABSTRACT 
 

Shape Memory Alloy (SMA) actuators which have ability to return to a predetermined shape 
when heated have many potential applications in aeronautics, surgical tools, robotics, and so on. 
Although the number of applications is increasing, there has been limited success in precise motion 
control of these smart actuators. This paper presents a new development of SMA position control 
system by using Generalized Predictive Control (GPC) algorithm. The use of  GPC controller is to 
generate a control sequence by minimizing a cost function in such a way that the future system output 
is driven close to reference over finite prediction horizon. The experimental results from real time 
control using GPC method compared with conventional PID controller are also shown in this paper. 
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1. INTRODUCTION 
 

SMA is smart material which exhibits the 
shape memory effect property. This occurs 
through a solid-state phase change by molecular 
rearrangement. The two phases, which occur in 
SMA, are martensite and austenite. As higher 
temperatures, the material is in the austenite 
phase. As the temperature is lowered, material 
changes to martensite phase and grows until at 
sufficiently low temperatures. This unusual 
characteristic of SMA actuators has a wide 
variety of applications in control systems beside 
conventional types such as electric, hydraulic, 
and pneumatic actuators.  

Model – based control for SMA actuators has 
been presented in only a few reports. Usually 
Preisach model of hysteresis based on 
phenomenological nature [2], [7] is developed. 
Although the Preisach model has been found 
widespread acceptance to capture the major 
features of hysteresis phenomena, there have 
been some restrictions on the accuracy and 
computation time the inversion of this model. 
These are caused by the limitation of switching 
points in Preisach plane, the inaccuracy and time 
consuming of data collection from first order 
transition curves. This paper presents a new 
development of SMA position control system by 
using generalized predictive control strategy. 

Since Generalized Predictive Control (GPC) [3], 
[5], [10] has been known as an effective tool for 
the self – turning control of many practical 
processes, therefore it is suitable to be applied in 
slow response SMA systems. The use of  GPC 
algorithm is to generate control sequence by 
minimizing a cost function in such a way that the 
future system output is driven close to reference 
over finite prediction horizon. Hence this control 
strategy can be used to compensate the hysteresis 
effect and improve accuracy for the 
displacement of shape memory alloy actuators.  

The remainder of the paper is organized as 
follows. Section 2 provides a briefly review of 
the on –line model identification method by 
using recursive parameter estimation algorithm 
[1], [6]. The real time implementation of GPC 
algorithm is presented in section 3. In section 4, 
experimental results for SMA position control 
system obtained from GPC algorithm are 
compared with conventional PID control. 
Concluding rermarks are provided in section 5.  

2.RECURSIVE MODEL IDENTIFICATION 

  Adaptive control is mostly based on the on – 
line system identification. In this section, non – 
linear model can be approximately linearized 
around a particular operating point and written in 
the form 



      ( ) ( ) ( )Ty t t tϕ θ ε= +                         (1) 

where ( )y t is the output at time t,          

1 2( ) [ ( ) ( )... ( )]T
nt t t tϕ ϕ ϕ ϕ=  contains known 

information at time t, for instance old output and 
input signals from dynamic system, 

1 2[ ... ]T
nθ θ θ θ= consists of n parameters that we 

want to estimate based on available information, 
( )tε  is denoted as model error.  

As already known, the objective is to fit the 
parameter vector θ in model (1), such that  the 
equation error ε(t) gets as small as possible. A 
following least squares criterion has been used to 
measure how well the model fits the 
experimental data: 
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the minimum of this criterion is obtained when 
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Using equation (1), we obtain:   

       ( ) ( ) ( ) ( )Td t d y t t t
d d
ε ϕ θ ϕ
θ θ

⎡ ⎤= − = −⎣ ⎦       (4) 

Note that the output ( )y t  and the regression 
vector ( )tϕ  consist of information from real 
process, and therefore do not depend on the 
parameter vector θ in the considered regression 
model. From equations (3) and (4), the parameter 
θ is determined by the relation:  
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To get the final solution, from (1) and (5), we 
have:  
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which gives the estimation of parameter θ: 
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In order to be used in on – line estimation, 
the computation is implemented recursively to 
save the computation time. The computation can 
be arranged in such way that the results at time 

1t − can be used in order to get estimates at time 
t. The equation (6) is now written in a recursive 
form, but first this equation is rewitten as follow 
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Let ˆ( 1)tθ −  denotes the least squares estimates 
based on the measurements at time 1t − , the 
definition of ( )P t  is:  

    1 1( ) ( 1) ( ) ( )TP t P t t tϕ ϕ− −= − +                   (8)  
 using equation (7) and (8) gives:
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Now the estimate at time t can be written as: 
    ˆ ˆ( ) ( 1) ( ) ( )t t K t tθ θ ε= − +                  (10) 

where ˆ( ) ( ) ( ), ( ) ( ) ( ) ( 1)TK t P t t t y t t tϕ ε ϕ θ= = − −  

( )tε can be interpreted as the prediction error 
(one step ahead) of  ( )y t  based on the estimate 
ˆ( 1)tθ − . The next step is to find a recursive 

equation for the update of ( )P t . By applying the 
matrix inversion formula: 
 1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA− − − − − − −+ = − +  
to the equation (8), we have 

( 1) ( ) ( ) ( 1)( ) ( 1)
( ) ( 1) ( )

T

T

P t t t P tP t P t
I t P t t

ϕ ϕ
ϕ ϕ

− −
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In several adaptive control systems, the 
parameters iθ are not constants. In case the 
parameters vary slowly in time, the least – 
squared criterion in (2) is replaced with: 

2

1

1( , ) ( ( ) ( ) )
2

t
t i T

i
J t y i iθ λ ϕ θ−

=

= −∑     (12) 

The parameter (0 1)λ λ< ≤  is called forgetting 
factor: The most recent data point have λ=1, but 
data points that are n time unit old are weighted 
by nλ .  
Repeating the calculation leading the equation 
(11), the follow results are obtained: 

ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)Tt t K t y t t tθ θ ϕ θ⎡ ⎤= − + − −⎣ ⎦      (13a) 
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In order to be used in on – line 
identification, Bierman UD factorization 
algorithm [1] is applied to compute the 



paremater estimation. This identification 
algorithm is written as a S-Function in order to 
be used with Real Time Windows Target 
Toolbox of Matlab. 

 
3. APPLICATION OF GENERALIZED 
PREDICTIVE CONTROL TO SMA 
ACTUATORS SYSTEMS 

 
 The system to be controlled is described by 

the following Controlled Autoregressive and 
Integrated Moving Average (CARIMA) model 

1
1 1 ( )( ) ( ) ( ) ( 1) ( )C qA q y t B q u t tξ

−
− −= − +

∆
         (14) 

where ( )y t  is the system output, ( )u t is the 
control signal, ( )tξ is the process disturbance, 

1( )A q−  and 1( )B q− are polynomials in backward 
shift operator 1q− , 11 q−∆ = − is a different 
operator. In slow response SMA system, the 
model (14) is modified with a delay d steps and 
explained on the signal error as follow 

1 1 1( ) ( ) ( ) ( 1) ( ) ( )dA q y t B q q u t C q tξ− − − −∆ = ∆ − +    (15) 
due to:  1( ) (1 ) ( ) ( ) ( 1)y t q y t y t y t−∆ = − = − −  
             1( ) (1 ) ( ) ( ) ( 1)u t q u t u t u t−∆ = − = − −  

The main idea of GPC is to compute the 
future control sequence by minimising the 
following cost function in such a way that the 
future output ( )y t is driven close to 
reference ( )r t :  
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where ( )y t j+  is the j  – step prediction of the 
system output on the data up to time t, ( )r t j+ is 
the future reference signal, λ  is a weight 
coefficient to penalize the control sequence, 
and {.}E is the expectation operator which has 
been used to indicate the computation of control 
values upon the data up to time t and the 
stochastic disturbance model. 1 2, , uN N N  are the 
minimum predictive horizon, maximum 
predictive horizon, and control horizon 
respectively.  

To solve this problem, we need to know the 
predicted output values that are computed 
through the following steps. 
Rewrite the model (14) as follow  
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Consider the identity: 
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The output prediction is obtained by using 
Diophantine equation: 

1 1 1 1( ) ( ) ( ) ( ).j
i iC q E q A q q F q− − − − −= ∆ +           (19) 
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Substituting ( )tξ  from (17) to (20) gives: 
1 1 1
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              (21) 

The output at time t j+  is calculated from the 
known values at time t and the future control 
signal 

For simplicity, the C  polynomial is chosen 
to be 1, then the equation (21) becomes: 
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The unknown polynomial 1 1( ), ( )E q F q− − is 
found by solving the recursion form of 
Diophantine equation (19). Consider two instants 
of time i  and 1i + : 

    1 1 11 ( ) ( ) ( )i
i iE q A q q F q− − − −= ∆ +             (23) 

    1 1 ( 1) 1
1 11 ( ) ( ) ( )i

i iE q A q q F q− − − + −
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where 1,2,..., ui N= . Subtracting (23) from (24) 
gives: 
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let  1 1
1( ) ( )i iR E q E q− −
+= −  in thi  step, therefore: 

   1
i

iR R r q−= +                (26) 
where 1,i i ir e +=  is the coefficient at the most 
negative degree of 1iE + . Therefore equation (25) 
can be rewritten as: 

1 1 1 1 1
1 10 ( ) ( ) ( ) ( ) ) (27)i

i i iA q R q q F q F q r A q− − − − − −
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To identify two sides of equation (27), we must 
have:   

i)     1 0R =              (28) 
this means that all coefficient of iE  are also the 
coefficient of 1iE + , or: 

   1 1
1( ) ( ) i

i i iE q E q r q− − −
+ = +              (29) 

ii)   1 1 1
1( ) ( ) ( )i i iF q q F q r A q− − −
+ ⎡ ⎤= − ∆⎣ ⎦      (30) 

where     
1 1 1 1

0 1 0 1( ) ..., ( ) ...i i iF q f f q A q a a q− − − −= + + = + +  

     Equations (29) and (30) can be used to 
compute the values of iE , iF , as well as ir . The 
value of ir  obtained by supposing that there is no 
positive degree of q  in 1iF +  formula. This 
means 0 0 0i if r− = , due to 0 1a ∆ = . Therefore:  

        0 0i ir f=                  (31) 
Suppose that the initial values for 1( )E q− and 

1( )F q− are: 1
1( ) 1E q− = and 1 1

1( ) 1 ( )F q q A q− −⎡ ⎤= − ∆⎣ ⎦  

 the updated values of iE  and iF  at each instant 
of time can be computed by the following 
procedure: 
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where 11,2,..., ui N −= . The predicted output is 
computed from equation (22) as follow: 
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which can be written in the form: 

  ˆ( ) ( | ) ( )y t j y t j k y t j+ = + + +         (33) 

the first part:  
1 1 1ˆ( | ) ( ) ( ) ( ) ( ) ( 1)(34)i iy t j k F q y t E q B q u t j d− − −+ = + ∆ + − −

consists of two terms: one depending on the 
future control after time t, one depending on the 
measured variable at time k.   
the second part 1( ) ( ) ( )jy t j E q t jξ−+ = +  is the 
future noise signal. This does not depend on the 
control signal. Therefore, the cost function (16) 
is changed to a form that depends only on the 
error and control signal: 
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where 1 21, , uN d N d n and N i n= + = + ≤ ≤  

Equation (34) can be rewritten: 
1 1ˆ( | ) ( ) ( ) ( ) ( 1) (36)i jy t j k F q y t G q u t j d− −+ = + ∆ + − −

where 1 1 1( ) ( ) ( )j iG q E q B q− − −=  

Hence, the future outputs can be calculated in 
recursive form: 

1 1

2 2

( 1) ( ) ( )
( 2) ( 1) ( )

.
( ) ( 1) ( )N N

y t G u t d F y t
y t G u t d F y t

y t N G u t d N F y t

+ = ∆ − +
+ = ∆ − + +

+ = ∆ − + − +

          (37)  

Let ( )f t j+  be the component of future outputs 
( )y t j+  computed from the signals which are 

known at time t, therefore: 
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where 1 1
0 1( ) ...i i iG q g g q− −= + +  

Then the above equations can be rewritten in the 
vector form: 

  ŷ Gu f= +            (39) 
where the vectors are all 1N × : 
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Furthermore, the cost function in (36) can be 
expressed as: 
      ˆ ˆ( ) ( )T TJ y r y r u uλ= − − +        (40)  
Minimize this cost function without constraints 
on the future controls by using ( ) 0gradient J = , 
we have: 
      1( ) ( )T Tu G G I G r fλ −= + −       (41) 

where [ ]2( 1), ( 2),..., ( ) Tr r t r t r t N= + + +  is the 
reference signal 

In summary, the GPC algorithm is 



implemented through the following steps: 
•  Compute parameters for model (14)  
• Solve Diophantine equation (19) to obtain 

polynomials iE  and iF , then compute i iG E B=  
• Determine the future output ( )y t j+ by equation 

(33) 
• Find control signal vector u  from equation (41) 
• Let 1t t tu u u−= − ∆ . At 1k k= + , repeat the first 

step. 
In this work, the program implemented GPC 

algorithm is written as a block S-Function in 
order to used with Real Time Windows Target. 

 
4. EXPERIMENTAL RESULTS 
 

Fig.1 shows the experimental apparatus for 
SMA positioning system. In this experimental 
setup, a small tensile SMA wire is used with 
some main specifications: heat current: 
ca.2V/0.85A, gen. force: 8N, displacement: 
ca.5mm. The displacement is measured by a high 
precision potentiometer. This system is 
controlled in real-time by using Advantech PCI-
1711 Card with Real time Windows Target 
Toolbox of Matlab. 

  
Fig. 1  Experimental apparatus 

          
 Fig.2  Schemetic diagram of predictive 
controller applied to SMA actuator system 

 
GPC scheme applied to SMA actuators is 

shown in Fig.2.  There are three inputs to GPC 
controller: theta is the estimated parameters of 
model (14) computed by the algorithm in section 
2, r is the reference displacement, and y is the 
output displacement measured from SMA 
actuators.  The input current applied to SMA 

actuator system is obtained from the GPC 
controller. The  GPC controller computes a set of 
future control signals at each sampling time, but 
only the first element of control signal is applied 
to the system input.  

The performance of this control system is 
experimentally investigated for different 
reference inputs and various parameters of the 
GPC controller. Fig.3 shows the performance of 
the control system to a pulse reference input. The 
control signal computed from GPC algorithm is 
shown in Fig.4. The parameters of GPC 
controller used in these experiments are tuned to 
produce the good response:  

1 24, 20, 7, 5, 4, 0.25u a bN N N n n λ= = = = = = .  
            

                
 
 

                 
 

 

            
 
 

                 
 
 

The system response to step reference input is 

Fig. 3  System response to pulse reference input

Fig.4  Control signal 

          reference 

          system output

Fig. 6 Step response of PID Controller

Fig. 5  Step response of GPC Controller 



shown in Fig.5 and compared with conventional 
PID control shown in Fig.6.  

From  these figures, it can be observed that 
the GPC controller achieves better tracking 
response than PID controller despite the expense 
of more computation in implementation. 
Fig.7 and Fig.8 depict the performace of control 
system to sine reference input with difference 
frequency 

  
 
                              

 
 
 
The hysteresis curve drawn from input – output 
relation is shown in Fig.9. This result is obtained 
from the second cycle of sine reference input 
shown in Fig.8 
 

               
 

 
Since SMA actuators are slow response 

systems, therefore the experimental displacement 
trajectory to low frequency reference input 
mostly overlaps the desired displacement. Fig. 9 
shows the linear relationship between the desired 
displacement and the system output. 
Consequently, the GPC algorithm proves to be 
effective for hysteresis compensation and 
position control of SMA actuators.  

5. CONCLUSION 

In this paper, an adaptive generalized 
predictive controller was developed to control 

the position of SMA actuators. The 
implememtation of recursive parameter 
estimation and the GPC algorithm is successfully 
applied in real time control for SMA system. The 
experimental evaluation showed that the GPC 
controller could achieve good tracking to 
different reference input signals and therefore 
could compensate the hysteresis phenomenon of 
SMA actuators. The proposed controller was 
compared to the PID controller and was known 
to have better performance. This control method 
is not only useful applied for SMA actuators but 
also for other industrial processes. 
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Fig. 7  System response to sine reference input (cycle: 20s) 

Fig. 9  Input – Output relation 

Fig. 8  System response to sine reference input (cycle: 80s) 


