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ABSTRACT 
 

Nowadays, embedded systems with Linux OS are commonly applied in automotive 
industry. Some of applications require strict time response, and others need to be exactly 
scheduled to execute a period task. All of these are called time-sensitive applications. Measuring 
and evaluating time parameters of an embedded system for time-sensitive applications is very 
necessary for developers to guarantee that it works functionally. For this purpose, signal 
stimulating and signal analyzing hardware are required. In this paper, modular signal generating 
and signal analyzing means will be designed. The prototype of the evaluation system will be 
implemented to test and verify an embedded system.  
Improving the performance of the system is the next part of this report. The research focuses 
deeper on the possibility of turning Linux into a real-time operating system. Particularly, it 
investigates available real-time solutions for Linux, but also looks into the soft variants for 
completeness. A number of performance tests are conducted during the improvement to make 
sure that the implementation meets the demands of a real-time operating system.  
 
 
1 INTRODUCTION 
1.1 Embedded Linux OS 
Since Linux was initially developed by 
Linus Torvalds in 1991 as an operating 
system for IBM compatible personal 
computers based on the Intel 80386 
microprocessor, Linux today is available for 
many embedded systems with others various 
microprocessors. Over the years, Linus and 
many coordinating developers around the 
world have worked to make Linux available 
on other architectures, including Intel 
Xscale, Alpha, SPARC, Motorola 
MC680x0, PowerPC, and IBM System/390 
[1]. 
Linux is a versatile and cost effective 
operating system for embedded systems. It 
can be embedded in a surprisingly small 
system to handle simple tasks and scaled up 
to handle more complex tasks. Linux can 
run on most microprocessors with a wide 
range of peripherals and has a ready 
inventory of off the shelf applications. 

Development cycles are shortened through 
the use of mature tools, open source code, 
substantial documentation and available 
support services. Due to all those 
advantages, Linux is a good choice for 
embedded systems [2]. 
 
1.2 Real-time embedded Linux OS 
Since the evaluation system needs to be 
process all analyzing signals at strict time, 
we need a real-time operating system for the 
processor. Linux, with the real time 
extension, provides this kind of precise 
control over interrupt handling. Essentially, 
there is an interrupt manager that handles all 
interrupts. It does a good job of making sure 
that critical interrupts get run when needed. 
The hardness of this approach depends 
mostly on the CPU interrupt structure and 
context switch hardware support. This 
approach is sufficient for a large range of 
real time requirements. Even without the 
real time extensions, Linux is pretty good at 



keeping up with multiple streams of events 
[6] [7]. 
 
1.3 Evaluation methods 
There are varying levels of real-time 
systems evaluation. The most prevalent ones 
are the use of analytical models, the 
simulation of scheduling algorithms, and 
hardware simulation. Analytical models are 
mathematical theorems and proofs that 
model the worst time performance of one or 
more of the aspects of real-time systems, 
and by changing certain inputs to these 
theorems, an optimum performance can be 
proven. Simulation takes the analytical 
models one step further in creating a 
simulation using scheduling theory to 
experiment with behavior of real-time 
systems. Finally, hardware tests take the 
theorems that were postulated by the 
analytical model and have been simulated 
through the use of scheduling algorithms, 
and run tests on the actual hardware to 
discover any behavior that was not 
determined through either of the other two 
methods. 
This paper focuses on experimental test for 
actual hardware. The test is for the purpose 
of evaluating real-time scheduling capability 
of the embedded operating system. The 
target system is Triton board using PXA255 
processor with embedded Linux. In 
experiments, some test programs are run on 
the target system. Then a testing module 
logs all real-time data from it. The data will 
be sent to the host PC to analyze. The detail 
of experiments will be presented in the 
Section 2. 
 
1.4 Metrics of Characterization 
Two of the most common metrics used to 
characterize real-time systems are jitter and 
response time. These metrics will be 
measured and analyzed carefully on the test. 
Jitter represents the minimum and 
maximum time separating successive 
iterations of periodic tasks. If this inter-
arrival time is greater than the period of the 
task, it means that the task is running late, 
and this will show up as a positive jitter 
value. If that inter-arrival time is less than 

the period of the task, it means that the task 
is running early, and that will show up as a 
negative jitter value. This variation is caused 
by interference with interrupt and other 
tasks. This parameter is very important for 
real-time applications such as mechanic 
control, medicine instrument, etc. 
 

 
Figure 1: Real-Time Jitter. 

 
The execution of Task B pushes back the 3rd 
execution of Task A, causing the task 
completion times to deviate from their 
ideally periodic nature. 
Interrupt response time (interrupt latency) 
is the time that it takes for a real-time 
system to respond to an external interrupt 
and represents the reaction time of the 
system to an unscheduled event while under 
load. In other word, interrupt response time 
is the amount of time between when an 
interrupt is generated (internally or by an 
external device) and when an installed 
interrupt handler starts to execute. When the 
system is in an idle state this time is very 
short, but will be longer when for example 
other interrupts are processed. 
Interrupt response time is a very important 
measurement in a real-time system. It affects 
many other performance aspects such as 
scheduling precision and interrupts task 
latency. The worst case interrupt latency 
yields, for example, a lower boundary for 
the worst case interrupt task latency. The 
most interesting tests are those with load as 
the worst latencies show up under different 
levels of load. 
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Figure 2: Interrupt Latency 

 
2 EXPERIMENTS 
In this section, two tests will be proposed. 
They are performed on Triton Starter Kit. 
For the first one, a mark with an output bit 
of the GPIO port is generated, when a fixed 
period of time has elapsed, using as time 
generator the internal clock of the PC. The 
intention of this test is to measure the 
variations that come up when Linux is 
performing synchronic tasks.  
For the second test, the time that Linux take 
to response to an external interrupt is 
measured. The intention of this test is to 
characterize the ability of Linux in handling 
asynchronic tasks.  
All tests are performed under different kinds 
of load for the system: no load, background 
load, hard disk load, network load, 
calculation load, full load. 
 
2.1 Test 1: Jitter  
A 20 millisecond pulse-width square wave is 
generated in an output bit of the GPIO port. 
The time between the leading edge and the 
trailing edge of the square wave measured 
for single periods. This experiment will 
show the jitter of a periodic task. The period 
time is realized by using usleep function to 
sleep in a specified mount of time. The test 
result is the time that it actually slept.  
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Figure 3: Hardware setup for test 1 
 
2.2 Test 2: Interrupt Latency 
The testing program responds by turning on 
a digital output when an interrupt occurs. 
When the system receives a stimulate signal 
for interrupt at GPIO10, a pulse is generated 
in an output bit of the GPIO11. Any 
interrupt occurring while the output is high 
should be ignored. 
The elapsed time between the interrupt edge 
and the leading edge of the response pulse 
will be statistically measured, and shown in 
the histogram.   
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Figure 4: Hardware setup for test 2 

 
3 IMPLEMENTATION OF TESTING 

SYSTEM 
 
3.1 Jitter Test Module 

Jitter testing module is designed based on 
FPGA. The objectives of this module are to 
receive pulse signal from target system, 
count the time interval of this signal and 
transfer this value to PC through serial port. 
The accuracy degree of this module is 1 
microsecond.  
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Figure 5: Block diagram of jitter test 

module. 
 

3.2 Interrupt Latency Test Module 

Interrupt test module is design based on 
FPGA. The objectives of this module are to 
generate an interrupt requests and receive 
response pulse from target system. The time 
interval between the rising edge of the 
interrupt pulse and the leading edge of the 
response pulse will be statistically measured, 
and be sent to PC to draw in the histogram.   
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Figure 6: Block diagram of Interrupt 
Latency Test Module 

 
 
4 RESULT AND ANALYSIS 
 
4.1 Jitter 
All of the graphs shown are probability 
density of the jitter values. The highest value 
of occur number presents the desired period 
of 20 milliseconds. 

 
Figure 7: Histogram for Jitter of the target 
system 
 

Table 1: Statistic data of jitter using IRQ 
Type of 

Load 
Mean 
(us) 

Max 
(us) 

Min 
(us) 

Standard 
Deviation 

(us) 
No load 38.56 184 22 2.33 
Background 41.47 647 14 10.37 
Calculation  43.13 729 14 11.87 
Disk  229.06 6889 2 322.43 
Network  109.26 765 0 95.9 
Full 1696.15 9778 0 1515.91 

 
When the target system has no load, the 
jitter is low. But it increases numerously 
when some other tasks are running at the 
same time. In the worst case, when the 
system runs with full load, maximum jitter is 
about 9.8 milliseconds. This value of jitter 
cannot be allowed in a time-sensitive 
application. 
 



4.2 Interrupt 
The histograms below describe probability 
density of interrupt latency. 
 

 
Figure 8: Histogram for Interrupt Latency of 
the target system 
 

Table 2: Statistic data of interrupt latency 
using IRQ 

Type of 
Load 

Mean 
(us) 

Max 
(us) 

Min 
(us) 

Standard 
Deviation 

(us) 
No load 16.02 69 15 .17 
Background  15.94 69 15 .25 
Calculation  15.78 77 15 .73 
Disk  22.93 380 14 10.88 
Network  29.99 329 21 6.97 
Full 58.02 400 14 33.43 
 
According to the test result, it is realized that 
the level of system load affects interrupt 
latency considerably. This comes from the 
fact that the system disables all interrupts a 
short time when receiving new interrupts. If 
a new interrupt is generated when the other 
interrupts are disabled, it will not be handled 
by the system until the interrupts are enabled 
again.  
 
5 IMPROVEMENT 
Some improvements of Linux kernel on 
target system are proposed in order to gain a 
better real-time performance of the 
embedded system.  
 
5.1 Timer interrupts on PXA255 

processor 
Standard Linux kernel has already the 
timers. They are triggered by a periodic tick 
interrupt which has a period of 10 
milliseconds. This value can be reduced by 
using a higher resolution timer. This 
approach depends on the hardware that 
Linux is ported to. The objective to improve 

resolution of timers is to make an extensive 
driver for timers. 
 

 
Figure 9: Histogram for Jitter using OS 
timer interrupt 
 
Table 3: Statistic data of jitter of the periodic 

task using OS timer interrupt 
Type of 

Load 
Mean 
(us) 

Max 
(us) 

Min 
(us) 

Standard 
Deviation 

(us) 
No load 5.03 31 0 0.91 
Background 4.11 32 0 0.98 
Calculation  4.8 33 0 1.24 
Disk  6.16 111 0 3.46 
Network  15.6 195 3 6.35 
Full 21.23 289 0 18.4 
 
5.2 FIQ on Intel PXA255 processor 
FIQ is an advanced feature of exception of 
ARM architecture. The FIQ exception is 
generated externally by asserting the FIQ 
input on the processor. FIQ is designed to 
support a data transfer or channel process, 
and has sufficient private registers to remove 
the need for register saving in such 
application, therefore minimizing the 
overhead of context switching. FIQs have 
higher priority than IRQ in two ways. First, 
FIQ are serviced first when multiple 
interrupts occur. Second, servicing a FIQ 
causes IRQs to be disabled, preventing them 
from being serviced until after the FIQ 
handler has re-enabled them. This is usually 
done by restoring the CPSR from the SPSR 
at the end of the handler. [17] 
The jitter test with FIQ mechanism is done 
on the target system. The test result is shown 
in the histograms below. 

 



Figure 10: Histogram for Jitter of the target 
system 
 
Table 4: Statistic data of jitter of the periodic 

task using FIQ 
Type of 

Load 
Mean 
(us) 

Max 
(us) 

Min 
(us) 

Standard 
Deviation 

(us) 
No load 6.29 10 1 1.1 
Background  5.55 11 1 1.13 
Calculation  7.52 12 2 1.21 
Disk  7.09 13 2 1.27 
Network  6.64 12 1 1.2 
Full 8.55 14 1 1.59 
 
To demonstrate an external interrupt using 
FIQ, GPIO FIQ is implemented. GPIO58 is 
chosen for interrupt source. When the 
processor detects a rising edge on GPIO58, 
the FIQ handler will be executed. The 
handle function generates a pulse on 
GPIO11, so that the Interrupt Test System 
can measure interrupt latency of the FIQ 
interrupt. The value of FIQ latency is the 
time interval between the rising edge of 
GPIO58 and the rising edge of GPIO11 
output. 

 
Figure 11: Histograms of Interrupt latency 

using FIQ 
 

Table 5: Statistic data of Interrupt latency 
using FIQ 

Type of 
Load 

Mean 
(us) 

Max 
(us) 

Min 
(us) 

Standard 
Deviation 

(us) 
No load 2.01 4 2 0.02 
Background  2.02 4 2 0.03 
Calculation  2.01 4 2 0.02 
Disk  2.62 10 2 0.93 
Network  2.14 4 2 0.25 
Full 4.31 12 2 1.04 
 
6 CONCLUSION 
 

This paper has presented a method of using 
FPGA-based emulation to evaluate the real-
time performance of an embedded system 
with Linux OS. A number of tests were 
designed and implemented in order to 
measure and evaluate two parameters of 
real-time behavior, jitter and interrupt 
latency.  
The result of jitter test shows that the load of 
system affects remarkably the precision of 
scheduler. The maximum value of jitter goes 
up from 184 microseconds to approximate 
9.8 milliseconds when the load increases.   
The maximum value of interrupt latency in 
full load case goes up 400 microseconds. 
The statistic data from the test show that the 
latency is affected much by other processes 
with interrupt request for peripheral devices.  
Throughout this evaluation, users can 
estimate how well the time-sensitive 
applications run on the target system. The 
maximum values of latency are investigated 
and analyzed to ensure time constrains of 
applications. 
Some solutions have been proposed to 
reduce the latency. By utilizing the 
advanced features of ARM architecture, 
real-time performance of the embedded 
system can be improved significantly. Two 
these features are OS timer and Fast 
Interrupt Request (FIQ).  
Result of timer test shows that jitter can be 
reduced remarkably by OS timer. The 
maximum value of jitter in worst case is 
about 300 microseconds. It is good 
performance for applications that do not 
require very strict real-time. 
The next feature that can improve the real-
time performance is FIQ. The best 
performance of FIQ is proved by the test. 
The interrupt latency measures 12 
microseconds. It is near the hardware limit, 
and is a very good result for hard real-time 
applications. 
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