
EVALUATION OF REAL TIME PERFORMANCE
OF EMBEDDED LINUX

Truong Quang Vinh, Vo Ky Chau

Department of Electronic Engineering, HCMC University of Technology

ABSTRACT

Nowadays, embedded systems with Linux OS are commonly applied in automotive
industry. Some of applications require strict time response, and others need to be exactly
scheduled to execute a period task. All of these are called time-sensitive applications. Measuring
and evaluating time parameters of an embedded system for time-sensitive applications is very
necessary for developers to guarantee that it works functionally. For this purpose, signal
stimulating and signal analyzing hardware are required. In this paper, modular signal generating
and signal analyzing means will be designed. The prototype of the evaluation system will be
implemented to test and verify an embedded system.
Improving the performance of the system is the next part of this report. The research focuses
deeper on the possibility of turning Linux into a real-time operating system. Particularly, it
investigates available real-time solutions for Linux, but also looks into the soft variants for
completeness. A number of performance tests are conducted during the improvement to make
sure that the implementation meets the demands of a real-time operating system.

1 INTRODUCTION
1.1 Embedded Linux OS
Since Linux was initially developed by
Linus Torvalds in 1991 as an operating
system for IBM compatible personal
computers based on the Intel 80386
microprocessor, Linux today is available for
many embedded systems with others various
microprocessors. Over the years, Linus and
many coordinating developers around the
world have worked to make Linux available
on other architectures, including Intel
Xscale, Alpha, SPARC, Motorola
MC680x0, PowerPC, and IBM System/390
[1].
Linux is a versatile and cost effective
operating system for embedded systems. It
can be embedded in a surprisingly small
system to handle simple tasks and scaled up
to handle more complex tasks. Linux can
run on most microprocessors with a wide
range of peripherals and has a ready
inventory of off the shelf applications.

Development cycles are shortened through
the use of mature tools, open source code,
substantial documentation and available
support services. Due to all those
advantages, Linux is a good choice for
embedded systems [2].

1.2 Real-time embedded Linux OS
Since the evaluation system needs to be
process all analyzing signals at strict time,
we need a real-time operating system for the
processor. Linux, with the real time
extension, provides this kind of precise
control over interrupt handling. Essentially,
there is an interrupt manager that handles all
interrupts. It does a good job of making sure
that critical interrupts get run when needed.
The hardness of this approach depends
mostly on the CPU interrupt structure and
context switch hardware support. This
approach is sufficient for a large range of
real time requirements. Even without the
real time extensions, Linux is pretty good at

keeping up with multiple streams of events
[6] [7].

1.3 Evaluation methods
There are varying levels of real-time
systems evaluation. The most prevalent ones
are the use of analytical models, the
simulation of scheduling algorithms, and
hardware simulation. Analytical models are
mathematical theorems and proofs that
model the worst time performance of one or
more of the aspects of real-time systems,
and by changing certain inputs to these
theorems, an optimum performance can be
proven. Simulation takes the analytical
models one step further in creating a
simulation using scheduling theory to
experiment with behavior of real-time
systems. Finally, hardware tests take the
theorems that were postulated by the
analytical model and have been simulated
through the use of scheduling algorithms,
and run tests on the actual hardware to
discover any behavior that was not
determined through either of the other two
methods.
This paper focuses on experimental test for
actual hardware. The test is for the purpose
of evaluating real-time scheduling capability
of the embedded operating system. The
target system is Triton board using PXA255
processor with embedded Linux. In
experiments, some test programs are run on
the target system. Then a testing module
logs all real-time data from it. The data will
be sent to the host PC to analyze. The detail
of experiments will be presented in the
Section 2.

1.4 Metrics of Characterization
Two of the most common metrics used to
characterize real-time systems are jitter and
response time. These metrics will be
measured and analyzed carefully on the test.
Jitter represents the minimum and
maximum time separating successive
iterations of periodic tasks. If this inter-
arrival time is greater than the period of the
task, it means that the task is running late,
and this will show up as a positive jitter
value. If that inter-arrival time is less than

the period of the task, it means that the task
is running early, and that will show up as a
negative jitter value. This variation is caused
by interference with interrupt and other
tasks. This parameter is very important for
real-time applications such as mechanic
control, medicine instrument, etc.

Figure 1: Real-Time Jitter.

The execution of Task B pushes back the 3rd
execution of Task A, causing the task
completion times to deviate from their
ideally periodic nature.
Interrupt response time (interrupt latency)
is the time that it takes for a real-time
system to respond to an external interrupt
and represents the reaction time of the
system to an unscheduled event while under
load. In other word, interrupt response time
is the amount of time between when an
interrupt is generated (internally or by an
external device) and when an installed
interrupt handler starts to execute. When the
system is in an idle state this time is very
short, but will be longer when for example
other interrupts are processed.
Interrupt response time is a very important
measurement in a real-time system. It affects
many other performance aspects such as
scheduling precision and interrupts task
latency. The worst case interrupt latency
yields, for example, a lower boundary for
the worst case interrupt task latency. The
most interesting tests are those with load as
the worst latencies show up under different
levels of load.

time

IRQ
signal

Response

interrupt
latency

The interrupt
handler starts

running
The interrupt

handler
finishes

The actuator
triggers an
interrupt

Figure 2: Interrupt Latency

2 EXPERIMENTS
In this section, two tests will be proposed.
They are performed on Triton Starter Kit.
For the first one, a mark with an output bit
of the GPIO port is generated, when a fixed
period of time has elapsed, using as time
generator the internal clock of the PC. The
intention of this test is to measure the
variations that come up when Linux is
performing synchronic tasks.
For the second test, the time that Linux take
to response to an external interrupt is
measured. The intention of this test is to
characterize the ability of Linux in handling
asynchronic tasks.
All tests are performed under different kinds
of load for the system: no load, background
load, hard disk load, network load,
calculation load, full load.

2.1 Test 1: Jitter
A 20 millisecond pulse-width square wave is
generated in an output bit of the GPIO port.
The time between the leading edge and the
trailing edge of the square wave measured
for single periods. This experiment will
show the jitter of a periodic task. The period
time is realized by using usleep function to
sleep in a specified mount of time. The test
result is the time that it actually slept.

PXA255+Linux system Testing Module

Result

Control

periodic signal

milisecond

3.3V

20 40 60 80 100

Figure 3: Hardware setup for test 1

2.2 Test 2: Interrupt Latency
The testing program responds by turning on
a digital output when an interrupt occurs.
When the system receives a stimulate signal
for interrupt at GPIO10, a pulse is generated
in an output bit of the GPIO11. Any
interrupt occurring while the output is high
should be ignored.
The elapsed time between the interrupt edge
and the leading edge of the response pulse
will be statistically measured, and shown in
the histogram.

PXA255+Linux system Testing Module

Result

stilmuate

interrupt response

interrupt
response
latency

millisecond

millisecond

3.3V

3.3V

interrupt

output

Figure 4: Hardware setup for test 2

3 IMPLEMENTATION OF TESTING

SYSTEM

3.1 Jitter Test Module

Jitter testing module is designed based on
FPGA. The objectives of this module are to
receive pulse signal from target system,
count the time interval of this signal and
transfer this value to PC through serial port.
The accuracy degree of this module is 1
microsecond.

Mux UART

Control

Time
Counter

PXA250+Linux
system

FPGA

CLK

1MHz
ENClear

Data

GPIO

Result

T

Reset

Strobe

Clk_Div

16 bit 8 bit

Sel

Clk

Din

RAM
WE

8 bit

Figure 5: Block diagram of jitter test

module.

3.2 Interrupt Latency Test Module

Interrupt test module is design based on
FPGA. The objectives of this module are to
generate an interrupt requests and receive
response pulse from target system. The time
interval between the rising edge of the
interrupt pulse and the leading edge of the
response pulse will be statistically measured,
and be sent to PC to draw in the histogram.

PXA250+Linux
system

Result

CONTROL

FPGA

IRQ generator
Start EN

INT

INT_handle

Mux UARTTime
Counter

1MHz
ENClear

Data

Strobe
16 bit 8 bit

Sel

Clk

CLK

Reset

Clk_Div

Clk

Sync

Figure 6: Block diagram of Interrupt
Latency Test Module

4 RESULT AND ANALYSIS

4.1 Jitter
All of the graphs shown are probability
density of the jitter values. The highest value
of occur number presents the desired period
of 20 milliseconds.

Figure 7: Histogram for Jitter of the target
system

Table 1: Statistic data of jitter using IRQ
Type of

Load
Mean
(us)

Max
(us)

Min
(us)

Standard
Deviation

(us)
No load 38.56 184 22 2.33
Background 41.47 647 14 10.37
Calculation 43.13 729 14 11.87
Disk 229.06 6889 2 322.43
Network 109.26 765 0 95.9
Full 1696.15 9778 0 1515.91

When the target system has no load, the
jitter is low. But it increases numerously
when some other tasks are running at the
same time. In the worst case, when the
system runs with full load, maximum jitter is
about 9.8 milliseconds. This value of jitter
cannot be allowed in a time-sensitive
application.

4.2 Interrupt
The histograms below describe probability
density of interrupt latency.

Figure 8: Histogram for Interrupt Latency of
the target system

Table 2: Statistic data of interrupt latency
using IRQ

Type of
Load

Mean
(us)

Max
(us)

Min
(us)

Standard
Deviation

(us)
No load 16.02 69 15 .17
Background 15.94 69 15 .25
Calculation 15.78 77 15 .73
Disk 22.93 380 14 10.88
Network 29.99 329 21 6.97
Full 58.02 400 14 33.43

According to the test result, it is realized that
the level of system load affects interrupt
latency considerably. This comes from the
fact that the system disables all interrupts a
short time when receiving new interrupts. If
a new interrupt is generated when the other
interrupts are disabled, it will not be handled
by the system until the interrupts are enabled
again.

5 IMPROVEMENT
Some improvements of Linux kernel on
target system are proposed in order to gain a
better real-time performance of the
embedded system.

5.1 Timer interrupts on PXA255

processor
Standard Linux kernel has already the
timers. They are triggered by a periodic tick
interrupt which has a period of 10
milliseconds. This value can be reduced by
using a higher resolution timer. This
approach depends on the hardware that
Linux is ported to. The objective to improve

resolution of timers is to make an extensive
driver for timers.

Figure 9: Histogram for Jitter using OS
timer interrupt

Table 3: Statistic data of jitter of the periodic

task using OS timer interrupt
Type of

Load
Mean
(us)

Max
(us)

Min
(us)

Standard
Deviation

(us)
No load 5.03 31 0 0.91
Background 4.11 32 0 0.98
Calculation 4.8 33 0 1.24
Disk 6.16 111 0 3.46
Network 15.6 195 3 6.35
Full 21.23 289 0 18.4

5.2 FIQ on Intel PXA255 processor
FIQ is an advanced feature of exception of
ARM architecture. The FIQ exception is
generated externally by asserting the FIQ
input on the processor. FIQ is designed to
support a data transfer or channel process,
and has sufficient private registers to remove
the need for register saving in such
application, therefore minimizing the
overhead of context switching. FIQs have
higher priority than IRQ in two ways. First,
FIQ are serviced first when multiple
interrupts occur. Second, servicing a FIQ
causes IRQs to be disabled, preventing them
from being serviced until after the FIQ
handler has re-enabled them. This is usually
done by restoring the CPSR from the SPSR
at the end of the handler. [17]
The jitter test with FIQ mechanism is done
on the target system. The test result is shown
in the histograms below.

Figure 10: Histogram for Jitter of the target
system

Table 4: Statistic data of jitter of the periodic

task using FIQ
Type of

Load
Mean
(us)

Max
(us)

Min
(us)

Standard
Deviation

(us)
No load 6.29 10 1 1.1
Background 5.55 11 1 1.13
Calculation 7.52 12 2 1.21
Disk 7.09 13 2 1.27
Network 6.64 12 1 1.2
Full 8.55 14 1 1.59

To demonstrate an external interrupt using
FIQ, GPIO FIQ is implemented. GPIO58 is
chosen for interrupt source. When the
processor detects a rising edge on GPIO58,
the FIQ handler will be executed. The
handle function generates a pulse on
GPIO11, so that the Interrupt Test System
can measure interrupt latency of the FIQ
interrupt. The value of FIQ latency is the
time interval between the rising edge of
GPIO58 and the rising edge of GPIO11
output.

Figure 11: Histograms of Interrupt latency

using FIQ

Table 5: Statistic data of Interrupt latency
using FIQ

Type of
Load

Mean
(us)

Max
(us)

Min
(us)

Standard
Deviation

(us)
No load 2.01 4 2 0.02
Background 2.02 4 2 0.03
Calculation 2.01 4 2 0.02
Disk 2.62 10 2 0.93
Network 2.14 4 2 0.25
Full 4.31 12 2 1.04

6 CONCLUSION

This paper has presented a method of using
FPGA-based emulation to evaluate the real-
time performance of an embedded system
with Linux OS. A number of tests were
designed and implemented in order to
measure and evaluate two parameters of
real-time behavior, jitter and interrupt
latency.
The result of jitter test shows that the load of
system affects remarkably the precision of
scheduler. The maximum value of jitter goes
up from 184 microseconds to approximate
9.8 milliseconds when the load increases.
The maximum value of interrupt latency in
full load case goes up 400 microseconds.
The statistic data from the test show that the
latency is affected much by other processes
with interrupt request for peripheral devices.
Throughout this evaluation, users can
estimate how well the time-sensitive
applications run on the target system. The
maximum values of latency are investigated
and analyzed to ensure time constrains of
applications.
Some solutions have been proposed to
reduce the latency. By utilizing the
advanced features of ARM architecture,
real-time performance of the embedded
system can be improved significantly. Two
these features are OS timer and Fast
Interrupt Request (FIQ).
Result of timer test shows that jitter can be
reduced remarkably by OS timer. The
maximum value of jitter in worst case is
about 300 microseconds. It is good
performance for applications that do not
require very strict real-time.
The next feature that can improve the real-
time performance is FIQ. The best
performance of FIQ is proved by the test.
The interrupt latency measures 12
microseconds. It is near the hardware limit,
and is a very good result for hard real-time
applications.

REFERENCES

[1] John Lombardo, 2001, “Embedded
Linux”, New Riders.

[2] Blue Mug, Inc., December 2002,
“Embedded Linux Survey”,
www.bluemug.com

[3] Intel PXA255 and PXA210
application Processors, 2003,
“Developer’s Manual”,
http://www.intel.com

[4] Daniel P. Bovet and Marco Cesati,
2000, “Understanding the Linux
Kernel”, O’Reilly.

[5] Tigran Aivazian, 2001, “Linux Kernel
Internal”,
http://www.moses.uklinux.net/patches
/lki.sgml

[6] Bill Weinberg, MontaVista Software
Inc., 2001, “Embedded Linux – Ready
for real-time”, white paper,
http://www.mvista.com

[7] Bill Weinberg, MontaVista Software
Inc., 2001, “Moving from a
Proprietary RTOS To Embedded
Linux”, white paper,
http://www.mvista.com

[8] Blue Mug Inc., 2002, “Embedded
Linux Performance Study”,
http://www.bluemug.com

[9] Marco A. Sanvido, Vaclav Cechticky
Walter Schaufelberger, “Testing
embedded control systems using
hardware-in-the-loop simulation and
temporal logic”, 15th Triennial World
Congress, Barcelona, Spain

[10] Andrei V. Gurtov, 1999, “Technical
Issues of Real-Time Network
Simulation in Linux”, FDPW99
Volume 2, University of Helsinki.

[11] Steve Babin, March 2003,
“Diagnostics for design validation”,
article at
http://www.embedded.com/story/OEG
20030325S0033

[12] Luca Abeni, Ashvin Goel, Charles
Krasic, Jim Snow, Jonathan Walpole,
2002, “A measurement-base analysis
of real-time performance of Linux”,
scientific report at Oregon Graduate
Institute, Portland.

[13] Nicholas Mc Guire, 2001, “MiniRTL -
Hard Real Time Linux for Embedded
Systems”, FSMLab.

[14] Clark Williams, Red Hat, Inc., March
2002, “Linux Scheduler Latency”,
www.linuxdevices.com/articles/AT89
06594941.html

[15] Neil Matthew and Richard Stones,
1997, “Linux Programming”, Wrox
Press.

[16] Alessandro Rubini and Jonatthan
Corbet, “Linux Device Driver”,
O’Reilly.

[17] ARM Limited, 1999 , “ARM
Architecture Reference Manual”,
www.arm.com

[18] Douglas L. Perry, 1999, “VHDL”,
McGraw Hill.

