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Tóm tắt 

Cơ cấu động học song song (PKM) có độ cứng vững cao và có tính dẫn động tùy chọn (SA) có thể tạo những 

chuyển động riêng rẽ theo các bậc tự do mà không có các chuyển động phụ và được điều chỉnh và sử dụng dễ 

dàng. Do đó SA PKM có cả những ứng dụng vi mô lẫn vĩ mô như là: định vị ăng-ten hay ra-đa, tay máy dung 

trong giải phẫu, kết nối các đầu cáp quang, gia công các linh kiện bán dẫn, tay máy dùng trong sinh học, ... Việc 

tổng hợp các SA PKM bao gồm tổng hợp dạng cơ cấu song song có số bậc tự do theo yêu cầu và điều chỉnh vị trí 

tương đối các khâu để đạt tính chất dẫn động tùy chọn. Viêc tổng hợp trên dựa trên việc tạo nên ma trận Jacobi 

có dạng đường chéo. Việc tổng hợp được minh họa bởi việc thiết kế cơ cấu song song dẫn động tùy chọn có sáu 

bậc tự do và dựa trên cơ cấu đàn hồi.    

ABSTRACT 
Flexure parallel mechanism (FPM) possessing selective actuation (SA) feature can be used as a micro-
positioner. The design of SA FPMs consists of type synthesis of parallel mechanisms possessing the 
required number of degree of freedom (DOF), geometric arrangement of the structure to obtain the SA 
and conversion of the kinematic mechanism into the flexure mechanism. This paper focuses on the SA 
synthesis and the conversion into flexure mechanism. The diagonal form Jacobian matrix of the 
mechanism is the guideline for synthesizing a SA mechanism. The synthesis method is illustrated by 
the design of a SA 6-DOF FPM. 
Index Terms – Selective-actuation, parallel mechanism, flexure. 
 
 
1. INTRODUCTION 
 
 Thanks to characteristics such as high 
stiffness, clean room compatibility, no error 
accumulation and no backlash, FPM is 
employed as the micro-positioners. Recently, 
several FPM-based precision positioners are 
developed (Chang et al. [1], Ryu et al. [2], 
Koseki et al. [3], Yi et al. [4], Shim et al. [5], 
Gao et al. [6], Hudgens et al. [7], Canfield et al. 
[8], Oiwa et al. [9], Chung et al [10], Culpepper 

et al [11, 12], Dagalakis et al [13] and Glöss 
[14]). Beside those, there are studies about the 
determination of the error existing in the flexure 
mechanisms and the improvement of the 
accuracy of the flexure mechanisms (Niaritsiry 
et al [15, 16]). 
Here, the concept of SA is proposed for FPM 
design. An FPM with SA characteristics is one 
that each actuator will effect only one-axis 
direction movement, i.e., the motion axes are 
decoupled. Moreover, the actuators can be 
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reconfigured on the system to obtain the desired 
axes of motion without affecting the work of 
other existing actuators. In this way, SA rejects 
fully or eliminates partially the dependence of 
the end-effector motion on different axes of the 
actuators, and therefore, aids the decoupling of 
motion control. As the cost of precision 
actuators is relatively high compared to other 
subcomponents in a precision positioner, it is 
possible to configure the SA FPM to have 
appropriate number of actuators to perform the 
task for cost effectiveness. Hence, SA becomes 
an important design approach for miniaturized 
micro-positioners. 
 

 
Fig. 1 Six-DOF parallel kinematic mechanism. 
The constraint systems defined using screw 
theory allows us to define the geometric 
conditions of the limbs and, then, to construct 
the classes of parallel mechanisms in the 
synthesis of parallel mechanisms. FPM has 
small motion that can be considered as 
instantaneous motion. Hence, the design of FPM 
can employ screw theory describing the 
instantaneous kinematics of the mechanism. 
Type synthesis of parallel mechanisms using 
screw theory has been well studied in recent 
years by Fang and Tsai [17], Huang and Li [18], 
Frisoli et al. [19], Kong and Gosselin [20 - 22]. 
Recently, by combining a spherical and a 
translational mechanism into a single 
mechanism, Jin et al. proposed a three-identical-
limb 6-DOF parallel mechanism actuated by 
three 2-DOF actuators [23, 24] (Fig. 1). This 
paper focuses only on the SA synthesis and the 
conversion from the SA parallel mechanism into 
the SA FPM. Screw theory can be used to 
establish FPM Jacobian matrices carrying 

information of the geometrical configuration of 
the mechanism [25]. The information is then 
employed to synthesize the SA FPM that 
requires a special form of the Jacobians. 
 
2. SCREW THEORY-BASED SYNTHESIS 
OF SA PARALLEL MECHANISM 
 
The relationship between the end-effector 
motion of the parallel mechanism and the 
motions of acutated joints can be expressed 
using the instantaneous kinematics: 

dqqJdX )(= , 
where 

T),,,,,( dzdydxddd zyx θθθ=dX  is the vector of 
the infinitesimal end-effector motion, 

T
654321 ),,,,,( dqdqdqdqdqdq=dq is the vector of 

infinitesimal joints variables, 
J(q) is the Jacobian matrix. 
A mechanism is considered as an SA mechanism 
when the infinitesimal end-effector motion along 
every DOF is driven by only one specified 
actuator. The influence between the set of joint 
variables {dq1, dq2, …, dq6} on the set of the 
infinitesimal DOF motions of the end-effector 
{dθx, dθy, dθz, dx, dy, dz} is desired to be an 
one-to-one mapping, i.e., Jacobian matrix J(q) 
has diagonal form. 
Definition: Selective-actuation mechanism. 
A mechanism possessing a diagonal-form 
Jacobian matrix is a selective-actuation 
mechanism. 
We consider a parallel mechanism including m 
limbs, and each limb, without loss of generality, 
is an open-loop chain connecting the platform to 
the fixed base by l one-DOF joints 
(revolute/prismatic joint) and actuated joints in 
one limb appear in the first g joints (Fig. 2). The 
total number of DOF of the mechanism is thus 
(m⋅g). We denote SP and  as the instantaneous 
twist of the platform and the rate of joint 
variables respectively: 
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where 
yxzyx &&&&& ,,,, θθθ and z& are the rotation and 

displacement rates of the end-effector. 



jiq&  is the intensity of the unit screw Sji 
associated with the actuated joint j of limb i. 
 
 

 
Fig. 2 Limb i of a parallel mechanism. 

 
Following [25], the relationship between the 
instantaneous twist (displacement and rotation 
rate of the end-effector) and the actuated joint 
variables can be expressed as follows. 

qJSJ &qx =P ,      
       (1) 
where Jx and Jq are the direct and inverse 
Jacobian matrices respectively. 
The direct Jacobian matrix has the form: 
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assembled from the unit screws , (j = 1, 
2,…, g and i = 1, 2,…, m) that are reciprocal to 
all passive-joint screws in the limb i. 
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The inverse Jacobian matrix has the form: 
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Assume that the mechanism is working in a 
singularity-free workspace, the direct Jacobian 
Jx is invertible. Equation (1) expressing the 
relationship of actuated joint variables and the 
DOF of the end-effector can be rewritten as: 

qJJS &qx
1

P
−= .             

      (4) 
Lemma 1: The product  of a selective-
actuation parallel mechanism is in diagonal 
form. 

qx JJ 1−

In case that only one actuated joint appears in 
each limb (g = 1), from Eq. (3), we can see that 
the inverse Jacobian Jq is always in diagonal 
form. Therefore, the above condition can be 
simplified as follows.  
Lemma 2: For a parallel mechanism with only 
one actuated joint in each limb, the condition of 
selective actuation requires only that the direct 
Jacobian matrix  is in diagonal form. xJ
Lemmas 1 and 2 are then employed as a 
guideline to arrange the geometrical structure of 
the parallel mechanism resulted from type 
synthesis to achieve the SA condition. 
    
3. SYNTHESIS EXAMPLES 
 
 The synthesis of a SA parallel 
mechanisms based on the 6-DOF dexterous 
parallel mechanism obtained respectively in [23, 
24] is presented in this section. 
The 6-DOF parallel mechanism with three 
identical limbs (Fig. 1) proposed by Jin et al. 
[23, 24] is synthesized to obtain the SA 
characteristic. Each limb is an open-loop chain 
with two actuated joints: one prismatic joint and 
one revolute joint. The mechanism possesses 
some structure characteristics: all axes of the 
passive revolute joints intersect at one point in 
space, the axis of the actuated prismatic joint is 
perpendicular to the axes of corresponding 
passive prismatic joints, and the axes of three 
actuated revolute joints intersect at one point. 
This mechanism decouples the 3-DOF rotation 
and translation but not completely separate the 
all 6 DOFs. 
We define an instantaneous reference frame, 



(uvw), with its origin locates at the intersecting 
point P of the axes of six passive revolute joints 
and u-, v-, w-axes parallel to the x-, y-, z- axes 
of the base frame, (xyz), located at origin O that 
is the intersecting point of the axes of three 
actuated revolute joints (Fig. 3). The joint 
screws of limb i with respect to this 
instantaneous reference frame are determined as 
follows. 
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where 0 is a 3×1 zero vector and sji is the unit 
vector along the axis of prismatic joint j when j 
= 2, 3, 4 or along the axis of revolute joint j 
when j = 1, 5, 6 of limb i. 
 

 
Fig. 3. RPPPRR limb. 

 
Since the unit vector s1i is perpendicular to the 
unit vectors s3i and the unit vectors s4i, and s5i 
and s6i intersects at point P, two screws Sr1i and 
Sr2i that are reciprocal to all screws except for S1i 
and S2i respectively are defined as 
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Applying above screws and reciprocal screws to 
Eq. (2) and note that 
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Applying above screws and reciprocal screws to 
Eq. (3) we have the direct Jacobian matrix 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

×

×

×

×

×

=

→

→

→

T
13

T
13

T
12

T
12

T
11

T
11

TT
6353

TT
6252

TT
6151

)OP(

)OP(

)OP(

)(

)(

)(

ss

ss

ss

0ss

0ss

0ss

J x .   

      (8) 
Equation (7) shows that the inverse Jacobian 
matrix is in diagonal form. Therefore, the SA 
condition can be simplified as the direct 
Jacobian matrix is in diagonal form, i.e., 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×
×

×
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

×

×

00
00
00

)(

)(

)(

T
6353

T
6252

T
6151

ss

ss

ss

.   

      (9) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×
×

×
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00
00
00

T
13

T
12

T
11

s

s

s

.       

     (10) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

×

×

→

→

→

000
000
000

)OP(

)OP(

)OP(

T
13

T
12

T
11

s

s

s

.   

    (11) 
Note that  is a unit vector, hence, Eqs. (9) and 
(10) can be respectively changed to: 
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Equation (11) is satisfied when 

 or . Equation (16) 
shows that unit vectors  and  are 
mutually perpendicular, hence the first case is 
impossible. Therefore, Eq. (11) is satisfied if and 
only if 
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Fig. 4 Selective-actuation  6-DOF parallel 

mechanism. 
 
The conditions of Eq. (12), Eq. (13) and Eq. (14) 

can be explained based on the geometrical 
arrangement of the mechanism respectively as 

follows. 
(1) The axes of passive revolute joints of each 
limb are perpendicular together and create a 
plane. That plane is perpendicular to other 
planes created in similarly manner by axes of 
passive revolute joints of the remaining limbs. 
(2) The axes of actuated prismatic joints (or 
actuated revolute joints) of the three limbs are 
perpendicular to each other.  
(3) Points O and P coincide with each other. 
This condition guarantees decoupling of the 
translational motions. 
Together with the conditions proposed by Jin et 
al. [23, 24], the above three conditions allow the 
6-DOF dexterous parallel mechanism to provide 
six fully decoupled motion axes. The 
configuration of the SA 6-DOF parallel 
mechanism is illustrated in Fig. 4. The 
synthesized SA mechanisms possess diagonal 
Jacobians with unity diagonal elements. This 
guarantees the uniformity of the resolution of the 
mechanisms along different directions. 
 
4. CONVERSION OF SYNTHESIZED SA 
PARALLEL MECHANISMS INTO SA FPM 
 
 The conceptual design of an SA 6-DOF 
FPM is proposed based on the kinematic 
mechanism presented in Fig. 4. The RPPPRR 
limb of the mechanism is realized as a flexure 
limb including three flexure hinges, one linear 
spring and one 2-D flexure prismatic joint (Fig. 
5). Two passive prismatic joints in Fig. 4 are 

combined into one 2-D flexure prismatic joint. 
To avoid error of the end-effector motion due to 

Fig. 5  
RPPPRR  
Flexure 
 limb 
 



deformation along non-working directions of 
these passive prismatic joints, we use the 2-D 
linear spring built from four columns with two 
pairs of orthogonal corner-filleted hinges as a 2-
D flexure prismatic joint. One flexure hinge and 
one flexure spring is serially connected and 
actuated by two linear actuators to perform two 
actuated joints. The complete limb is designed as 
a monolithic structure and satisfies the 
manufacturability required by the cutting tools 
such as EDM or water jet machine. The 
monolithic structure of the limb avoids assembly 
error and allows three revolute joints to be 
intersectional and orthogonal at a center (called 
center of three flexure hinges) as stated by the 
SA condition. 
Three limbs are connected to a hollow-cube 
platform. The center of the cube is the end-
effector. The position of connection interfaces is 
strictly arranged using positioning pins so that 

the flexure-hinge centers (Fig. 5) of three limbs 
coincide at the end-effector. The assembly 
scheme of the entire mechanism is shown in Fig. 
6. Figure 7 illustrates the fully assembled SA 6-
DOF FPM. 
 
5. CONCLUSION 
 The conceptual design of an SA 6-DOF 
FPM with three identical limbs is proposed 
based on the selective-actuation synthesis and 
the flexurization of the rigid-body mechanism. 
The condition of SA is stated as the diagonal 
matrix form of Jacobian matrix of the 
mechanism. Based on the Jacobian matrix 
formulated using screw theory, the links and 
joints of the mechanism matching the 
requirement of DOF resulted from recent type 
synthesis is geometrically arranged to satisfy the 
SA condition. The links and joints of the SA 
parallel mechanisms are then realized as the 
flexure groups in order to obtain the desired SA 
FPMs.

 
Fig. 6 Assembly scheme of SA 6-DOF FPM. 

 
Fig. 7 Assembled SA 6-DOF FPM. 
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