Ky yéu Hpi nghi Khoa hoc & Cong nghé lan thir 9, DH Bdach Khoa Tp. HCM, Phdn ban CNTT

NHUNG PHUONG PHAP DUA TREN NHANH-VA-CAN
CHO NHUNG BAI TOAN QUI HOACH NGUYEN

BRANCH-AND-BOUND BASED METHODS
FOR INTEGER PROGRAMS

Tran Van Hoai

Khoa Cong Nghé Thong Tin, Dai hoc Bach khoa, Tp. Hb Chi Minh, Viét nam
hoai@dit.hcmut.edu.vn

BAN TOM TAT

Bai bao gi¢i thi€u mét lanh vue nghién ctru trong t6i wu to hop, goi 1a quy hoach nguyén. Khong
gidng nhimg phwong phéap tinh toan mém, hudng nghién clru nay tap trung nghién ctru nhing ly thuyet
va phuong phap hiéu qua trong viéc tim kiém 10i giai toi uvu toan cuc. Trong do, branch-and-bound két
hop véi viée tao nhirng mit cat 1 mot phuong phap khung ndi tiéng. Nhiéu khia canh tir tng dung, mé
hinh dén phwong phép giai s& duoc khao sat va trinh bay tom tit. Lanh vuc ndy ciing 1a mot hudng
g dung ciia tinh toan song song dang 1a mot xu thé phét trién ciia tinh toan khoa hoc hiéu ning cao.
Viéc gidi cac bai toan tdi wu c6 khdi lugng tinh toan 16n trong thoi gian hop 1y 14 rat kha thi.

ABSTRACT

In the paper, we present an interesting research area in combinatorial optimization, called integer
programming. Not as non-exact methods, this direction primarily focuses on finding optimal solutions
efficiently. Branch-and-bound with cutting plane generation is a well-known framework to solve
integer programs. All its aspects ranged from applications, models to solution methods will be briefly
surveyed. Moreover, the area is also considered under a view of parallel computing, which is an
increasingly popular trend in high performance scientific computing. It is promising to solve large
scale optimization problems to optimality within a reasonable computation time.

It is known that a COP can be formulated as
an integer program (IP), which is a special form
of a linear mixed integer program

x+ 1y
Ax+Gy=»b)
xeZ!,yeR’

1. Integer programming and applications

Variables of optimization problems fall into
two categories: continuous variables, and min
discrete variables. We call those problems with

! : I those problems w (MIP)
discrete variables combinatorial optimization

problems which look for an object from a finite,
or possibly countably infinite, set. More
specifically, ~we are given a finite

set N=\1,---,n| , weight for each /€N | and
aset I of feasible subsets of NV . The problem
of finding a minimum weight feasible subset is a
combinatorial optimization problem

(COP) .y J

In an IP, there is no continuous variable. If
we restrict the variables x as xE'}O,l}n , we
have a binary problem (BIP).

A wide variety of practical applications can
be modeled and solved wusing integer
programming. Some of them are:

e Airline crew scheduling: Given a flight

set of an aircraft type operating in a
schedule horizon. The problem is to

21

Ky yéu Hpi nghi Khoa hoc & Cong nghé lan thir 9, DH Bdach Khoa Tp. HCM, Phdn ban CNTT

assign crew to serve those flights with a
minimum operational cost. Moreover, the
solution also has to satisfy a complicated
set of constraints coming from labor laws,
contractual agreements, regulations.

» Electricity generation planning: The
problem is to develop an hourly schedule
spanning a day or a week so as to decide
which generators will be producing and at
what levels. We also keep the solution
constrained within a peak demand,
satisfying estimated hourly or half-hourly
demand. Many more constraints should
be included in practical applications.

* Network designing: Computer
networking and telecommunication are
two demanding areas nowadays. One of
the problems in these areas is how to
install a new capacity to satisfy a
predicted demand and minimize the
installation cost. The possibility of failure
of a line of center due to breakdown or
accident should be taken into account.

* Timetabling: Scheduling classes and
examinations to avoid conflicts, without
violating resources available, such as
number of class rooms, room capacity,
and other hard and soft constraints are
computationally difficult problems. One
of a simple model for the problem is set
partitioning model, which is a BIP.

2. Sequential solution methods

2.1. Cutting plane algorithms

Solving large scale integer programs is still
challenging problem involving not only general
algorithms but also problem specific techniques.
General algorithms can be classified into 2
types: non-exact algorithms and exact ones.
Non-exact methods are mainly based on
heuristics or approximation algorithms. Greedy
and local search algorithms could be the first
choice of researchers to attack a combinatorial
optimization problem. Unfortunately, under the
local search mechanism, we can get trapped in a
local minimum. In order to escape from that, we
need an improved heuristic. Well-known
techniques which can help us in such a case are
tabu search, simulated annealing, and genetic
algorithms. They are called meta-heuristics.

22

Tabu search was started by Glover (1986)
and strongly discussed in two following texts
(Glover, 1989, 1990). The idea behind the
method is to avoid cycling in the process of
moving among feasible solutions. Simulated
annealing approaches in a different way by
choosing randomly a neighbor to move to.
Precisely, the neighbor will be chosen with the
probability of 1 if it has a better cost value,
otherwise, with some probability strictly
between 0 and 1. The method is described
in Metropolis etal. (1953); Kirkpatrick et al.
(1983). Genetic algorithms originated with the
work of Holland (1975); Goldberg (1989). Not
working with an individual solution, at each
iteration, the method considers a finite set of
solutions (called population) and this set will
change randomly from one generation to the
next.

If one prefers an exact approach, cutting
plane algorithms and branch-and-bound
algorithms are widely used methods.
Furthermore, they can also be used in non-exact

heuristics. Given an IP:

min{c]mx:Ax:b,xEZ"}, a cutting plane

method tries to find out the description of the
convex hull of the set of feasible solutions. The
method iteratively cuts off fractional points of
the polyhedron P ={x€R” : Ax=b}‘ by valid
inequalities. In order to understand the
algorithm, we must perceive the following
definition.

Definition: The
associatpd with an
min{ x:xeXxc R"} is the problem: given
x*€R" | is xEAconv(X) ? If not, find a
valid inequality €' x<I€ for X | but violated
by the point.

problem
program

separation
integer

The equivalence of optimization and
separation is shown by Grotschel et al. (1981).

In Algorithm Error! Reference source not
found. which describes a basic cutting plane
algorithm, £ in the algorithm denotes a family
of valid inequalities for X . Certainly, the
algorithm can terminate without finding an
integral solution. Moreover, although several
cutting plane algorithms (e.g., the cutting plane
algorithm with Gomory cuts) were proved,
under some circumstances, to be of finite
convergence, it is still not practical to continue

Ky yéu Hpi nghi Khoa hoc & Cong nghé lan thir 9, DH Bdach Khoa Tp. HCM, Phdn ban CNTT

the loop until no violated valid inequality is
found. The exit from the loop gives an improved
formulation which can be the input of a branch-
and-bound method to be discussed in the next
section.

Algorithm 2.1: A cutting plane algorithm

t—0,P'=P
While(stopping condition not reached) do
Solve the linear program

‘_ S I 1]
X —argmlnx{cj X:xXEP
If x'€Z" then

x"isan optimal solution
Break
Else

Solve the separation problem for x" and the
family a

w 31, 16)€F such that j¢ x> i€,
then
Jis
Pt pinfid v <ig)
te—t+1
Else
Break
End if
End if
End while
Links to integer programming can be found
in many textbooks on combinatorial
optimization or integer programming, such as
Nembhauser and Wolsey (1988); Papadimitriou
and Steiglitz (1998); Wolsey (1998). A book of
Kallrath and Wilson (1997) which shows the
integer programming problem under the
application’s point of view could be helpful to
those who want to solve practical problems.

2.2. Branch-and-bound

The so-called branch-and-bound method is
based on two following conclusions:

Proposition 2.2 Consider the problem
z:min{cmx: xEX}) Let
X=X U---UX
X into

Kbe a
smaller sets, and let

decomposition of

k (

z =rnin{cfmx:x€Xk} for k=1,---, K

Then z=minkzk
Proposition 2.3 Use the same notations as

in Proposition Error! Reference source not
k k
found.. Let z

be a lower bound on z" , and
Then

is a lower bound on Z and

_k k
Z° be an upper bound on z
z=min, zF
ST

Z=min, z* is an upper bound on Z .

With the help of Proposition Error!
Reference source not found., many smaller

problems finding 2% do not need to be solved
or be stopped quickly because they violate some
bounds. The idea is called implicit enumeration
which contrasts to explicit enumeration which
explores totally the feasible region. It is not
necessary to solve smaller problems to
optimality. Instead, upper or lower bounds are
enough for the branch-and-bound method
(otherwise, we can decompose those problems
to smaller parts). Hence, a relaxation of an IP is
needed, being defined as an optimization

problem (RP) with the feasible set Xp2X ,
and the cost function Z (X)<c'x forx€X

Algorithm Error! Reference source not found.
gives a general branch-and-bound algorithm for

solving IP: min{cmx.‘ xEXJ)

23

Ky yéu Hpi nghi Khoa hoc & Cong nghé lan thir 9, DH Bdach Khoa Tp. HCM, Phdn ban CNTT

Algorithm 2.2: A general branch-and-bound
algorithm
L<|(IP)|,
Zpe©
While(L not empty) do

Select and delete a problem (IP)' from L

XO<—X , g()(——oo ,

Solve its relaxation (RP)’ with optimal value

ZlR and optimal solution le (if they exist)
{Problem relaxation}

If 5, <Z,, then {bounding}

i i o i _ o

If x,?€X" and ¢ X, <Z; then
_ fn_i
ZpeC Xy

Delete from L ai
ZZSEIP . {fathoming}

problems with

if c“x'=z" then
Continue
End if
End if

Decompose X' into {X’-’}'/:l and add

1k
associated problems {(IP)’} to L , where

Jj=1

End if
End while

In the algorithm, there are several main
interesting questions as follows.

Zij:ZiR for j=1,-+-,k _{branching}

» How to select the next open subproblem

(IP)' 2 A good selection can help
finding optimal solutions quickly.
However, the selection strategy should
also consider a trade-off between keeping
the number of explored nodes in the
search tree and staying within the
memory capacity of the computer in use.

+ How to decompose X' ? Generally
speaking, the search space is subdivided
by addition of constraints to normally
disjoint subproblem:s.

* How to make a “good” relaxation ?
Linear relaxation is often a choice in
many branch-and-bound codes partly due
to the linear presentation of the remaining
problem if we drop the integral
constraints of an integer problem. Cutting

24

plane generation is also a main approach
to tighten the feasible region of a
subproblem.

* How to improve the upper bound by non-
exact methods ? Reducing the gap
between lower bound and upper is quite
crucial in solving large scale integer
programs.

Obviously, exploring a branch-and-bound
tree of an instance of an optimization problem is
a time consuming task, especially with NP-hard
problems. Parallel computing which utilize
computing resources of parallel machines is one
of methods to explore branch-and-bound trees
efficiently.

3. Parallel branch-and-bound

In order to parallelize a sequential branch-
and-bound solver, we have to investigate many
aspects of parallel architecture and parallel
programming. In this paper, we only focus on
distributed memory systems because of their
popularity and high performance. Message-
passing is a well-known parallel programming
model for such systems. These systems is also
scalable up to hundreds or thousands processors.
Additionally, there exist good implementations,
such as MPI (message passing interface), PVM
(parallel virtual machine), to support developers.
A combination of integer programming and
parallel computing is increasingly pervasive.

As mentioned in the previous section, the
tree search with bounding is the main point of
branch-and-bound. Therefore, the parallelism is
normally performed on the tree level. This
means that open subproblems are smallest
computational units processed by processors and
transferred among them.

In order to implement an efficient parallel
branch-and-bound solver, we should consider
main interesting issues below.

* Design scheme: In the sequential design
of branch-and-bound, a pool of open
subproblems exists in a unique main
memory. However, a parallel solver can
use a centralized pool or several
distributed pools. In the centralized
scheme, we can have a complete
knowledge on tree search (bounds,
cutting planes, etc.), but the master

Ky yéu Hpi nghi Khoa hoc & Cong nghé lan thir 9, DH Bdach Khoa Tp. HCM, Phdn ban CNTT

possibly becomes a bottleneck.
Otherwise, synchronizing several pools
distributed in memory of different
processors is a hard problem. But, the
distributed scheme is more scalable.

* Portable and easy-to-use design:
Scientists in combinatorial optimization
area can have little knowledge on parallel
computing. But, in many cases, they
really want to speedup the process of
finding optimal solution or search a good
solution for their problems. If we want to
provide them with a parallel branch-and-
bound framework, we should consider the
ability to transform a sequential code to a
corresponding parallel code easily. The
library will be more portable with MPI or
PVM as communication library.

* Load balancing: Besides general load
balancing aspects, a parallel branch-and-
bound should take into account aspects of
node selection strategy and branching
strategy. They are the sources of creating
open subproblems and controlling the
search direction.

There are still many theoretical and practical
aspects which cannot be presented in this paper.
We can find them in Clausen (1997); Ralphs
et al. (2003).

4. Conclusion

Integer programs are used to model many
practical applications. However, it is classified
as an NP-complete problem which cannot be
solved by an efficient algorithms. Therefore,
carefully investigating practical properties of an
application can help us to present a good model
and suggest an efficient problem-specific
solution method. This is also one of our research
direction into real world applications. Another
area in our future plan is to apply parallel and
distributed computing to integer programming in
order to speedup the solution process.

References

J. Clausen. Parallel Computing in
Optimization, chapter Parallel Branch-and-

Bound - Principles and Personal
Experiences, pages 239-267. Kluwer
Academic Publishers, 1997.

F. Glover. Future Paths for Integer

Programming and Links to Artificial
Intelligence. Computers and Operations
Research, 13:533-549, 1986.

F. Glover. Tabu Search — Part I. ORSA Journal
on Computing, 1(3):190-206, 1989.

F. Glover. Tabu Search — Part II. ORSA
Journal on Computing, 2(1):4-32, 1990.

D. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning, pages
1-24. Addison-Wesley, 1989.

M. Groétschel, L. Lovasz, and A. Schrijver. The
Ellipsoid Method and its Consequences in
Combinatorial Optimization.
Combinatorica, 1(2):169-197, 1981.

J.H. Holland. Adaptation in Natural and
Artifical Systems. University of Michigan
Press, Ann Arbor, M1, 1975.

J.Kallrath and J. M. Wilson. Business
Optimization. MacMillan Business, London,
1997.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimisation by Simulated Annealing.
Science, 220:671-680, 1983.

N. Metropolis, A. Rosenbluth, M. Rosenbluth,
A. Teller, and E. Teller. Equations of State
Calculations by Fast Computing Machines.
Journal of Chemical Physics, 21:1087—
1091, 1953.

G. L. Nemhauser and L. A. Wolsey. Integer
and Combinatorial Optimization. John
Wiley & Sons, New York, 1988.

C.H. Papadimitriou and K. Steiglitz.
Combinatorial Optimization (Algorithms
and Complexity). Prentice-Hall, New Jersey,
1998.

T. K. Ralphs, L. Ladanyi, and M. J. Saltzman.
Parallel Branch, Cut, and Price for Large
Scale Discrete Optimization. Technical
report, Department of Mathematical
Sciences, IBM, 2003.

L. A. Wolsey. Integer Programming. John
Wiley, New York, 1998.

25

