
Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT 

 21

NHỮNG PHƯƠNG PHÁP DỰA TRÊN NHÁNH-VÀ-CẬN  
CHO NHỮNG BÀI TOÁN QUI HOẠCH NGUYÊN 

 
BRANCH-AND-BOUND BASED METHODS  

FOR INTEGER PROGRAMS 
                                                                                                 

Trần Văn Hoài 
 

Khoa Coâng Ngheä Thoâng Tin, Đại học Bách khoa, Tp. Hồ Chí Minh, Việt nam 
hoai@dit.hcmut.edu.vn 

 
 

BẢN TÓM TẮT 
 

Bài báo giới thiệu một lãnh vực nghiên cứu trong tối ưu tổ hợp, gọi là quy hoạch nguyên. Không 
giống những phương pháp tính toán mềm, hướng nghiên cứu này tập trung nghiên cứu những lý thuyết 
và phương pháp hiệu quả trong việc tìm kiếm lời giải tối ưu toàn cục. Trong đó, branch-and-bound kết 
hợp với việc tạo những mặt cắt là một phương pháp khung nổi tiếng. Nhiều khía cạnh từ ứng dụng, mô 
hình đến phương pháp giải sẽ được khảo sát và trình bày tóm tắt. Lãnh vực này cũng là một hướng 
ứng dụng của tính toán song song đang là một xu thế phát triển của tính toán khoa học hiệu năng cao. 
Việc giải các bài toán tối ưu có khối lượng tính toán lớn trong thời gian hợp lý là rất khả thi. 

 
 

ABSTRACT 
 

In the paper, we present an interesting research area in combinatorial optimization, called integer 
programming. Not as non-exact methods, this direction primarily focuses on finding optimal solutions 
efficiently. Branch-and-bound with cutting plane generation is a well-known framework to solve 
integer programs. All its aspects ranged from applications, models to solution methods will be briefly 
surveyed. Moreover, the area is also considered under a view of parallel computing, which is an 
increasingly popular trend in high performance scientific computing. It is promising to solve large 
scale optimization problems to optimality within a reasonable computation time. 

 
 

1. Integer programming and applications 
 
Variables of optimization problems fall into 

two categories: continuous variables, and 
discrete variables. We call those problems with 
discrete variables combinatorial optimization 
problems which look for an object from a finite, 
or possibly countably infinite, set. More 
specifically, we are given a finite 
set N 1, , n , weight  for each j N , and 
a set F of feasible subsets of N . The problem 
of finding a minimum weight feasible subset is a 
combinatorial optimization problem 

(COP) min
S N j S

c j : S F  (1) 

It is known that a COP can be formulated as 
an integer program (IP), which is a special form 
of a linear mixed integer program 

(MIP) 
min cÎ¤x hÎ¤ y

s . t . Ax Gy b
x Z n , y Rn

 (2) 

In an IP, there is no continuous variable. If 
we restrict the variables x as x 0,1 n , we 
have a binary problem (BIP). 

A wide variety of practical applications can 
be modeled and solved using integer 
programming. Some of them are: 

• Airline crew scheduling: Given a flight 
set of an aircraft type operating in a 
schedule horizon. The problem is to 



Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT 

 22 

assign crew to serve those flights with a 
minimum operational cost. Moreover, the 
solution also has to satisfy a complicated 
set of constraints coming from labor laws, 
contractual agreements, regulations. 

• Electricity generation planning: The 
problem is to develop an hourly schedule 
spanning a day or a week so as to decide 
which generators will be producing and at 
what levels. We also keep the solution 
constrained within a peak demand, 
satisfying estimated hourly or half-hourly 
demand. Many more constraints should 
be included in practical applications. 

• Network designing: Computer 
networking and telecommunication are 
two demanding areas nowadays. One of 
the problems in these areas is how to 
install a new capacity to satisfy a 
predicted demand and minimize the 
installation cost. The possibility of failure 
of a line of center due to breakdown or 
accident should be taken into account. 

• Timetabling: Scheduling classes and 
examinations to avoid conflicts, without 
violating resources available, such as 
number of class rooms, room capacity, 
and other hard and soft constraints are 
computationally difficult problems. One 
of a simple model for the problem is set 
partitioning model, which is a BIP.  

 
2. Sequential solution methods 

2.1. Cutting plane algorithms 
 

Solving large scale integer programs is still 
challenging problem involving not only general 
algorithms but also problem specific techniques. 
General algorithms can be classified into 2 
types: non-exact algorithms and exact ones. 
Non-exact methods are mainly based on 
heuristics or approximation algorithms. Greedy 
and local search algorithms could be the first 
choice of researchers to attack a combinatorial 
optimization problem. Unfortunately, under the 
local search mechanism, we can get trapped in a 
local minimum. In order to escape from that, we 
need an improved heuristic. Well-known 
techniques which can help us in such a case are 
tabu search, simulated annealing, and genetic 
algorithms. They are called meta-heuristics. 

Tabu search was started by Glover (1986) 
and strongly discussed in two following texts 
(Glover, 1989, 1990). The idea behind the 
method is to avoid cycling in the process of 
moving among feasible solutions. Simulated 
annealing approaches in a different way by 
choosing randomly a neighbor to move to. 
Precisely, the neighbor will be chosen with the 
probability of 1 if it has a better cost value, 
otherwise, with some probability strictly 
between 0 and 1. The method is described 
in Metropolis et al. (1953); Kirkpatrick et al. 
(1983). Genetic algorithms originated with the 
work of Holland (1975); Goldberg (1989). Not 
working with an individual solution, at each 
iteration, the method considers a finite set of 
solutions (called population) and this set will 
change randomly from one generation to the 
next. 

If one prefers an exact approach, cutting 
plane algorithms and branch-and-bound 
algorithms are widely used methods. 
Furthermore, they can also be used in non-exact 
heuristics. Given an IP: 
min cÎ¤ x : Ax b , x Z n , a cutting plane 

method tries to find out the description of the 
convex hull of the set of feasible solutions. The 
method iteratively cuts off fractional points of 
the polyhedron P x Rn : Ax b  by valid 
inequalities. In order to understand the 
algorithm, we must perceive the following 
definition. 

Definition: The separation problem 
associated with an integer program 
min cÎ¤ x : x X Rn  is the problem: given 
x Rn  , is x conv X  ?  If not, find a 

valid inequality Ï€Î¤x Ï€0  for X , but violated 
by the point. 

The equivalence of optimization and 
separation is shown by Grötschel et al. (1981). 

In Algorithm Error! Reference source not 
found. which describes a basic cutting plane 
algorithm, F  in the algorithm denotes a family 
of valid inequalities for X . Certainly, the 
algorithm can terminate without finding an 
integral solution. Moreover, although several 
cutting plane algorithms (e.g., the cutting plane 
algorithm with Gomory cuts) were proved, 
under some circumstances, to be of finite 
convergence, it is still not practical to continue 



Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT 

 23

the loop until no violated valid inequality is 
found. The exit from the loop gives an improved 
formulation which can be the input of a branch-
and-bound method to be discussed in the next 
section. 

Algorithm 2.1: A cutting plane algorithm 
  

t 0, P0 P  
While( stopping condition not reached) do 

Solve the linear program 

xt argminx cÎ¤ x: x Pt  

If xt Z n then 

xt is an optimal solution 
Break 

Else 

Solve the separation problem for xt and the 
family F  

If Ï€t , Ï€0
t F such that Ï€tÎ¤x Ï€0

t  
then 

Pt 1 Pt Ï€tÎ¤
x Ï€0

t  

t t 1  
Else 

Break 
End if 

End if 
End while 
Links to integer programming can be found 

in many textbooks on combinatorial 
optimization or integer programming, such as 
Nemhauser and Wolsey (1988); Papadimitriou 
and Steiglitz (1998); Wolsey (1998). A book of 
Kallrath and Wilson (1997) which shows the 
integer programming problem under the 
application’s point of view could be helpful to 
those who want to solve practical problems. 

 

2.2. Branch-and-bound 
 
The so-called branch-and-bound method is 

based on two following conclusions: 
Proposition 2.2 Consider the problem 

z min cÎ¤ x : x X . Let 
X X 1 X K be a decomposition of 
X into smaller sets, and let 

z k min cÎ¤x : x X k  for k 1, , K . 
Then z mink z k . 

Proposition 2.3 Use the same notations as 
in Proposition Error! Reference source not 
found.. Let z k  be a lower bound on z k , and 
z k  be an upper bound on z k . Then 
z mink zk  is a lower bound on z  and 
z mink zk  is an upper bound on z .  

With the help of Proposition Error! 
Reference source not found., many smaller 
problems finding z k  do not need to be solved 
or be stopped quickly because they violate some 
bounds. The idea is called implicit enumeration 
which contrasts to explicit enumeration which 
explores totally the feasible region. It is not 
necessary to solve smaller problems to 
optimality. Instead, upper or lower bounds are 
enough for the branch-and-bound method 
(otherwise, we can decompose those problems 
to smaller parts). Hence, a relaxation of an IP is 
needed, being defined as an optimization 
problem (RP) with the feasible set X R X , 
and the cost function zR x cT x  for x X . 
Algorithm Error! Reference source not found. 
gives a general branch-and-bound algorithm for 
solving IP: min cÎ¤ x : x X .  



Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT 

 24 

Algorithm 2.2: A general branch-and-bound 
algorithm 

L IP , X 0 X , z 0 , 
z IP  

While( L not empty) do 

Select and delete a problem IP i from L  

Solve its relaxation RP i with optimal value 

zR
i

 and optimal solution xR
i

(if they exist) 
{Problem relaxation}  

If zR
i zIP then {bounding} 

If xR
i X i  and cÎ¤x R

i z IP then 

z IP cÎ¤xR
i

 

Delete from L all problems with 

z i zIP . {fathoming} 

If cÎ¤ xR
i zR

i then 

Continue 
End if 

End if 

Decompose X i into X ij
j 1
k

and add 

associated problems IP i
j 1
k

to L , where 

z ij z R
i

for j 1, , k . {branching} 

End if 
End while 
In the algorithm, there are several main 

interesting questions as follows.  
• How to select the next open subproblem 

IP i  ?  A good selection can help 
finding optimal solutions quickly. 
However, the selection strategy should 
also consider a trade-off between keeping 
the number of explored nodes in the 
search tree and staying within the 
memory capacity of the computer in use. 

• How to decompose X i  ?  Generally 
speaking, the search space is subdivided 
by addition of constraints to normally 
disjoint subproblems. 

• How to make a “good” relaxation ?  
Linear relaxation is often a choice in 
many branch-and-bound codes partly due 
to the linear presentation of the remaining 
problem if we drop the integral 
constraints of an integer problem. Cutting 

plane generation is also a main approach 
to tighten the feasible region of a 
subproblem. 

• How to improve the upper bound by non-
exact methods ?  Reducing the gap 
between lower bound and upper is quite 
crucial in solving large scale integer 
programs.  

Obviously, exploring a branch-and-bound 
tree of an instance of an optimization problem is 
a time consuming task, especially with NP-hard 
problems. Parallel computing which utilize 
computing resources of parallel machines is one 
of methods to explore branch-and-bound trees 
efficiently. 

3.  Parallel branch-and-bound 
 
In order to parallelize a sequential branch-

and-bound solver, we have to investigate many 
aspects of parallel architecture and parallel 
programming. In this paper, we only focus on 
distributed memory systems because of their 
popularity and high performance. Message-
passing is a well-known parallel programming 
model for such systems. These systems is also 
scalable up to hundreds or thousands processors. 
Additionally, there exist good implementations, 
such as MPI (message passing interface), PVM 
(parallel virtual machine), to support developers. 
A combination of integer programming and 
parallel computing is increasingly pervasive. 

As mentioned in the previous section, the 
tree search with bounding is the main point of 
branch-and-bound. Therefore, the parallelism is 
normally performed on the tree level. This 
means that open subproblems are smallest 
computational units processed by processors and 
transferred among them. 

In order to implement an efficient parallel 
branch-and-bound solver, we should consider 
main interesting issues below. 

• Design scheme: In the sequential design 
of branch-and-bound, a pool of open 
subproblems exists in a unique main 
memory. However, a parallel solver can 
use a centralized pool or several 
distributed pools. In the centralized 
scheme, we can have a complete 
knowledge on tree search (bounds, 
cutting planes, etc.), but the master 



Kỷ yếu Hội nghị Khoa học & Công nghệ lần thứ 9, ĐH Bách Khoa Tp. HCM, Phân ban CNTT 

 25

possibly becomes a bottleneck. 
Otherwise, synchronizing several pools 
distributed in memory of different 
processors is a hard problem. But, the 
distributed scheme is more scalable. 

• Portable and easy-to-use design: 
Scientists in combinatorial optimization 
area can have little knowledge on parallel 
computing. But, in many cases, they 
really want to speedup the process of 
finding optimal solution or search a good 
solution for their problems. If we want to 
provide them with a parallel branch-and-
bound framework, we should consider the 
ability to transform a sequential code to a 
corresponding parallel code easily. The 
library will be more portable with MPI or 
PVM as communication library. 

• Load balancing: Besides general load 
balancing aspects, a parallel branch-and-
bound should take into account aspects of 
node selection strategy and branching 
strategy. They are the sources of creating 
open subproblems and controlling the 
search direction.  

There are still many theoretical and practical 
aspects which cannot be presented in this paper. 
We can find them in Clausen (1997); Ralphs 
et al. (2003). 

4.  Conclusion 
 
Integer programs are used to model many 

practical applications. However, it is classified 
as an NP-complete problem which cannot be 
solved by an efficient algorithms. Therefore, 
carefully investigating practical properties of an 
application can help us to present a good model 
and suggest an efficient problem-specific 
solution method. This is also one of our research 
direction into real world applications. Another 
area in our future plan is to apply parallel and 
distributed computing to integer programming in 
order to speedup the solution process. 

 

References 
J. Clausen. Parallel Computing in 

Optimization, chapter Parallel Branch-and-

Bound - Principles and Personal 
Experiences, pages 239–267. Kluwer 
Academic Publishers, 1997. 

F. Glover. Future Paths for Integer 
Programming and Links to Artificial 
Intelligence. Computers and Operations 
Research, 13:533–549, 1986. 

F. Glover. Tabu Search – Part I. ORSA Journal 
on Computing, 1(3):190–206, 1989. 

F. Glover. Tabu Search – Part II. ORSA 
Journal on Computing, 2(1):4–32, 1990. 

D. Goldberg. Genetic Algorithms in Search, 
Optimization, and Machine Learning, pages 
1–24. Addison-Wesley, 1989. 

M. Grötschel, L. Lovász, and A. Schrijver. The 
Ellipsoid Method and its Consequences in 
Combinatorial Optimization. 
Combinatorica, 1(2):169–197, 1981. 

J. H. Holland. Adaptation in Natural and 
Artifical Systems. University of Michigan 
Press, Ann Arbor, MI, 1975. 

J. Kallrath and J. M. Wilson. Business 
Optimization. MacMillan Business, London, 
1997. 

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 
Optimisation by Simulated Annealing. 
Science, 220:671–680, 1983. 

N. Metropolis, A. Rosenbluth, M. Rosenbluth, 
A. Teller, and E. Teller. Equations of State 
Calculations by Fast Computing Machines. 
Journal of Chemical Physics, 21:1087–
1091, 1953. 

G. L. Nemhauser and L. A. Wolsey. Integer 
and Combinatorial Optimization. John 
Wiley & Sons, New York, 1988. 

C. H. Papadimitriou and K. Steiglitz. 
Combinatorial Optimization (Algorithms 
and Complexity). Prentice-Hall, New Jersey, 
1998. 

T. K. Ralphs, L. Ladányi, and M. J. Saltzman. 
Parallel Branch, Cut, and Price for Large 
Scale Discrete Optimization. Technical 
report, Department of Mathematical 
Sciences, IBM, 2003. 

L. A. Wolsey. Integer Programming. John 
Wiley, New York, 1998. 




