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ABSTRACT 
 
Intelligent control techniques have emerged to overcome some deficiencies in conventional 

control method in dealing with complex real-world systems. These problems include knowledge 
adaptation, learning and expert knowledge incorporation. In this paper, a newly proposed intelligent 
controller which includes both neural network controller as compensator and an intelligent switching 
control algorithm based on learning vector quantization neural network (LVQNN) is used to control of 
complex dynamic systems. A superb mixture of conventional PID controller and the neural network’s 
powerful capability of learning, adaptive and tackle nonlinearity bring us a good-tracking controller 
for such a kind of plants with high nonlinearity and hysteresis. In addition, with the greatly changing 
external environments, a learning vector quantization neural network (LVQNN) is applied as a 
supervisor of the conventional PID controller, which estimates the external environments and switches 
to the optimal gain of the PID controller.  

Results of simulating on the complex dynamic systems such as pneumatic artificial muscle (PAM) 
manipulator show that the newly proposed intelligent controller presented in this study can making 
online control with better dynamic property, strong robustness and suitable for the control of various 
plants, including linear and nonlinear process and without regard to the severe change of external 
environments. 

 
 
1. INTRODUCTION 

 
Staring with linear control techniques, the 

strategy of PID control has been one of the 
sophisticated methods and most frequently used 
in the industry due to its simple architecture, 
easy tuning, cheap and excellent performance 
[1][2]. However, the requirement of control 
precision becomes higher and higher, as well as 
the plants become more and more complex. 
Hence, the conventional PID controller with 
fixed parameters may usually deteriorate the 
control performance. Various types of modified 
PID controllers have been developed such as an 
adaptive/self-tuning PID controller [3], self-
tuning predictive PID controller [4], and so on. 
Though satisfactory performance can be 
obtained and the proposed controllers above 
provide better response, command following 
and greater bandwidth than the conventional 
PID control method, these controllers are 
limited because of the limitation of capability of 

learning algorithm and step by step tuning 
control parameters without automatically.  

More recently neural networks have been 
used to implement intelligent control systems. It 
is anticipated that the combination will take 
advantage of simplicity of PID control and the 
neural network’s powerful capability of 
learning, adaptability and tackling nonlinearity. 
There are multitude of PID controllers based on 
neural networks with various kinds of structures 
and learning algorithms. The position controller 
based on PID controller and neural networks 
was used [5]. Nonlinear PID controller using 
neural networks to improve dynamic properties 
of complex system was proposed by Matsukuma 
and his team [6]. Although these intelligent 
controllers can control the nonlinear systems 
with high performance, it is difficult to analyze 
the control systems and in particular, the 
external environment problems were assumed to 
be constant or slowly varying. With greatly 
changing external environments, an intelligent 



 

PID controller with a neural supervisor had been 
tried [7]. However, any con troll algorithm 
introduced up to now was proved that the 
control performance becomes deteriorated with 
respect to the abruptly and greatly changing 
external environments. 

To overcome these problems, a newly 
proposed intelligent controller which includes 
both neural network controller as compensator 
and an intelligent switching control algorithm 
based on learning vector quantization neural 
network (LVQNN) is used to control of 
complex dynamic systems without regard to 
greatly changing external environments. 

A superb mixture of conventional PID 
controller and the neural network’s powerful 
capability of learning, adaptive and tackle 
nonlinearity bring us a good-tracking controller 
for such a kind of plants, which are high 
nonlinearity and hysteresis. In addition, with the 
greatly changing external environments, a 
learning vector quantization neural network 
(LVQNN) is applied as a supervisor of the 
conventional PID controller, which estimates the 
external environments and switches to the 
optimal gain of the PID controller.  

Results of simulating on the complex 
dynamic systems such as pneumatic artificial 
muscle (PAM) manipulator show that the newly 
proposed intelligent controller presented in this 
study can make online control with better 
dynamic property, strong robustness and 
suitable for the control of various plants, 
including linear and nonlinear process and 
without regard greatly changing external 
environments. 
 
2. INTELLIGENT CONTROL 
ALGORITHM 
 
2.1 The overall control system 
Figure 1 shows the overall structure of the 
newly proposed intelligent control algorithm. 
The proposed algorithm consists of a neural 
network controller, which is installed in parallel 
with conventional PID controller and an 
intelligent switching control algorithm in order 
to estimate the external environments and switch 
to the optimal gain of the PID controller. 
A conventional PID control algorithm is applied 
in this paper as the basic controller. The 
controller output can be expressed in the time 
domain as: 
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Taking the Laplace transform of (1) yields: 
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The resulting PID controller transfer function of: 
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A typical real-time implementation at sampling 
sequence k can be expressed as: 
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)()()( kxkyke −=  (5) 
where )(ku f , )(ke , )(ky  and )(kx  are the 
output of conventional PID controller, the error 
between the desired set point and the output, the 
desired set point and the output, respectively. 
From Fig. 1, the control input to plant can be 
computed as follow: 

)()()( kukuku Nf +=  (6) 

where )(kuN  is the modify-output of neural 
network controller. 

 
Fig. 1 Structure of the newly proposed 

intelligent control algorithm 
2.2 Neural network controller 
In order to overcome the limitation of the 
conventional PID controller and improve its 
property, a neural network controller is installed 
in parallel with conventional PID controller as 
compensator. Neural network controller can 
represent any nonlinear function, and has self-
learning and parallel processing abilities as well 
as strong robustness and fault-tolerance, so it fits 
for online adaptive control with PID controller.  
Conventional PID controller contributes to 
ensuring the stability of the system at the 
beginning of learning and neural networks 



 

controller adds the adaptability for variations of 
operational conditions. With the progress of 
learning, the output from linear controller 
decreases and the neural networks controller 
becomes to dominate the overall control system. 
The control error )(ke is used as a teaching 
signal to be minimized. 
2.2.1 Structure of neural network controller 
Figure 2 shows the structure of neural network 
controller. The input layer has seven neurons 
including a neuron with output of –1 to set the 
bias value of each neuron in hidden layer. There 
are fourteen neurons including a neuron with –1 
in hidden layer. All layers are connected in only 
the forward direction. The input to each neuron 
is given as the weighted sum of outputs from the 
previous layer. The output of each neuron is 
generated by linear function in the input layer, 
in hidden and output layers the sigmoid function 
is used. 
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2.2.2 Leaning algorithm  
In Fig. 2, the following symbols are defined: 

I
ji : Input to the jth neuron in the input layer 
I
jo :Output from the jth neuron in the input layer 

H
ki : Input to the kth neuron in the hidden layer 
H
ko :Output of the kth neuron in the hidden layer 

Oi : Input to the output layer 
Oo : Output from the output layer  
IH
jkω : Weight from the jth neuron in the input 

layer to the kth neuron in the hidden layer 
HO
kω : Weight from the kth neuron in the hidden 

layer to the output layer 
The modify-output of neural network controller 
can be expressed as following equation 
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nK : Proportional gain of the output of neural 
network controller 
The operation of each neuron is described as: 
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The leaning process is based on the back 
propagation algorithm, which minimizes E 
given by: 
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The weights are updated by the following 
increments to minimize E: 
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where 0>η is learning rate to determine the 
speed of leaning. 
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Oδ is called a generalized error calculated by: 
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The dynamic of the controlled plant is not 

considered to calculate Oo
y

∂
∂

 assumed to be 

constant. 
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The increment of weight can be written as: 
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Consequently, the weight is updated by: 
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The update equation, Eq. (25) of the weight 
IH
jkω  can be derived in the same manner.  
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With the learning of the neural network and the 
decreasing of the error, the neural networks 
works more and more effective until it 
completely compensates the deficiency of the 
conventional PID controller. The structure and 
the learning algorithm of the network are 
relative simple and the physical meaning of the 
input and outputs is clear. The effectiveness of 
the proposed controller is investigated through 
the simulation of the complex dynamic systems 
such as PAM manipulator. 
2.3 An intelligent switching control algorithm  
Problems with control the complex dynamic 
systems without regard greatly changing 
external environments is briefly discussed in this 
section. The variation external environments 
must be recognized for an intelligent control of 
the complex dynamic systems. Here, the 
learning vector quantization neural network 
(LVQNN) is proposed as a supervisor of the 
intelligent switching control algorithm. 

 
Fig. 2 Structure of neural network controller 

2.3.1 Structure of the neural classifier 
According to the learning process, neural 
networks are divided into two kinds: supervised 
and unsupervised. The difference between them 
lies in how the networks are trained to recognize 
and categorize objects. The LVQNN is a 
supervised learning algorithm, which was 

developed by Kohonen and is based on the self-
organizing map (SOM) or Kohonen feature 
map. The LVQNN methods are simple and 
effective adaptive learning techniques. They rely 
on the nearest neighbor classification model and 
are strongly related to condensing methods, 
where only a reduced number of prototypes are 
kept from a whole set of samples. This 
condensed set of prototypes is then used to 
classify unknown samples using the nearest 
neighbor rule. The LVQNN has a competitive 
and linear layer in the first and second layer, 
respectively. The competitive layer learns to 
classify the input vectors and the linear layer 
transforms the competitive layer’s classes into 
the target classes defined by the user. Figure 3 
shows the architecture of the LVQNN, where P, 
y, W1, W2, R, S1, S2, and T denote input 
vector, output vector, weight of the competitive 
layer, weight of the linear layer, number of 
neurons of the input layer, competitive layer, 
linear and target layer, respectively. In the 
learning process, the weights of the LVQNN are 
updated by the following Kohonen learning rule 
if the input vector belongs to the same category. 

)),()()((),( 111 jiWjpiajiW −=∆ λ  (27) 
If the input vector belongs to a different 
category, the weights of the LVQNN are 
updated by the following rule: 

)),()()((),( 111 jiWjpiajiW −−=∆ λ  (28) 
where λ is the learning ratio and )(1 ia  is the 
output of the competitive layer. 
2.3.2 Data generation for the training of the 
LVQNN 
In the design of the LVQNN, it was very 
important to identify what input to select and 
how many sequences of data to use. Generally 
the training result was better according to the 
increase of the number of input vectors, but it 
took more calculation time and the starting time 
of the recognition of inertia load was later. In 
our simulation, in order to recognize the 
variation external environments, the control 
input and system response are utilized to input 
vectors as shown in Fig. 4. The output of the 
LVQNN is an integer value, which is 
represented for the recognized-class. In our 
research works, 3 kinds of the environments are 
used, which are variation from high stiffness to 
low stiffness, and are called environment 1, 
environment 2 and environment 3, respectively. 
With respect to each environment, the outputs of 



 

the LVQNN are also called class 1, class 2, and 
class 3, respectively. 
To obtain the learning data for the LVQNN, a 
series of experiments were conducted under 3 
different external environments. With each 
environment, it just only has one PID controller, 
which is suitable to. That means there are 3 
controllers (PID Controller 1, PID Controller 2 
and PID Controller 3), which are suitable with 3 
kinds of the environments one by one. And then, 
the generation of training data is shown in Fig. 5 
and 6, which correspond to the control input to 
the system, and system response, respectively. 
To obtain the generation of training data, the 
control parameters of the PID controllers are 
obtained through trial-and-error, which are 
shown in Table 1. From Table 1, it was 
understood that the proportional, integral and 
derivative control gains were increasing in 
accordance with a decrease in the stiffness of the 
external environments. 
2.3.3 Training process of the LVQNN 
The learning vector quantization neural network 
(LVQNN) is a method for training competitive 
layers in a supervised manner. A competitive 
layer will automatically learn to classify input 
vectors. However, the classes that the 
competitive layer finds are dependent only on 
the distance between input vectors. If two input 
vectors are very similar, the competitive layer 
probably will put them into the same class. 
Thus, the LVQNN can classify any set of input 
vectors, not just linearly separable sets of input 
vectors. The only requirement is that the 
competitive layer must have enough neurons, 
and each class must be assigned enough 
competitive neurons.  
A total of 9 simulation cases were carried out to 
prepare for the generation of training data for 
the LVQNN. In the training stage of LVQNN, 
the number of input vectors were adjusted from 
4 to 22 with 10 steps and the number of neurons 
in the competitive layer were adjusted from 10 
to 28 with 10 steps, as shown in Table 2, in 
order to obtain the optimal weight of the 
LVQNN. To investigate the classification ability 
of the LVQNN, the same input vectors, which 
were used in the learning stage, were re-entered 
into the LVQNN and the learning success rate 
was calculated. Here, the learning success rate 
defines the percentage of success of the 
LVQNN learning, where success means that the 

output of the LVQNN was equal to the target 
class with respect to the same input vectors. 

 
Fig. 3 Structure of the LVQNN 

 
Fig. 4 Learning data for the LVQNN 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the LVQNN classified input vectors into 
target classes by using a competitive layer and 
the classes that the competitive layer found were 
dependent only on the distance between input 
vectors, a high learning success rate was 
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realized when the input vectors were distributed 
widely. 
From Fig. 7, it was also understood that the 
optimal number of input vectors and neurons of 
the competitive layer were chosen to be 14 and 
20, respectively and the maximum training 
success rate was 97[%], which was enough for 
recognition of the external environments. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Training success rate of the LVQNN 
2.4 Proposition of the smooth switching 
algorithm 
If the external environment was different from 
the previous training condition, the output of the 
LVQNN may have belonged to the mixed 
classes with different ratios in each case (i.e. if 
the external environment between environment 
1 and environment 2, it may have belonged to 1 
or 2 class). Therefore the following switching 
algorithm was proposed to apply to the abrupt 
change of class recognition result. The 
switching algorithm is described by the 
following equation: 
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where k is the discrete sequence, α is the 
forgetting factor and )(kclass is the output of 
the LVQNN at the k  time sequence.  
 
3. SIMULATION RESULTS 
 
To investigate the newly proposed intelligent 
control algorithm, the simulation on the 
complex dynamic systems such as pneumatic 
artificial muscle manipulator is carried out. As a 
novel actuator, which has been regarded during 
the decades as an interesting alternative to 
hydraulic and electronic actuators, the PAM 
actuator has been applied to many industrial 
applications as well as researching on modeling 
and control.  

Among previous works, as done by Osuka and 
his team [8], the nominal plant model of PAM 
manipulator was obtained as follow: 
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In my study, 3 kinds of environments with 
variation stiffness were assumed as below: 
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where 1=k , 1.0=k  and 01.0=k  with 
respect to high stiffness, normal stiffness and 
low stiffness, respectively.  
Firstly, the effectiveness of newly proposed 
intelligent control algorithm is demonstrated 
through simulation with respect to high stiffness 
environment. In simulation, the proportional 
gain of output of neural network controller, nK , 
and learning rate of neural network 
controller,η , are set to be 1100 and 0.01, 
respectively. These control parameters are 
obtained through trial-and-error. The initial 
values of weights from the input layer to the 
hidden layer, IH

jkω , and that of weights from the 

hidden layer to the output layer, HO
kω , of the 

neural network are given by random numbers 
from –0.1 to 0.1. As also, the control parameters 
of PID controller 1 are used in this case. Figure 
8 shows the comparison between conventional 
PID controller 1 and the proposed controller in 
case considering the effectiveness of neural 
network controller as compensator. That means, 
in this case, the effectiveness of an intelligent 
switching control algorithm is not applied yet. 
From Fig. 8, it is clear that the complex 
dynamics, high nonlinearity and hysteresis have 
been handled. The system response with the 
proposed control algorithm is very agreement 
with the desired set point. In addition, it is 
obvious that the proposed controller plays the 
main role at the beginning of the control 
process. After the neural network controller is 
consistently trained through error, it gradually 
compensates the deficiency of the conventional 
PID controller. This is a controlling and learning 
process with the ability of adapting the changing 
of the complex dynamic systems such as PAM 
manipulator. 
Figure 9 shows the simulation results of system 
response with variation external environments 
(k=1, k=0.1 and k=0.01), where the PID control 



 

gains were fixed and the same as that of the high 
stiffness environment. From Fig. 9, it was 
understood that the system response became 
worse according to the decrease of the stiffness 
and it was requested that the control parameters 
of PID controller be adjusted according to the 
change of the external environments. 
Next, simulations were carried out to verify the 
effectiveness of the proposed intelligent control 
algorithm. In this case, the proportional gain of 
output of neural network controller, nK , with 
respect to 3 kinds of the external environments 
from high stiffness to low stiffness are set to be 
1100, 7500, and 45000, respectively. As also, 
proposition of the smooth switching algorithm is 
applied in this situation. And the forgetting 
factor,α , is set to be 0.6. These control 
parameters are obtained through trial-and-error. 
In order to demonstrate the effectiveness of the 
newly proposed intelligent control algorithm, 
the initial control parameters of PID controller 1 
are used. That means the control parameters of 
PID controller 1 are set for all simulation 
without regard the external environments. After 
a few milliseconds, when the data is enough for 
recognizing the external environment by the 
LVQNN, the control parameters of PID will be 
auto-tuning by proposition smooth switching 
algorithm and the result from recognition class 
of the LVQNN. The simulation results are 
shown in Fig. 10, 11 and 12, which correspond 
to the high stiffness environment, normal 
stiffness environment, and low stiffness 
environment, respectively. In these figures, we 
show system response, control input, output of 
neural network controller and output of the 
LVQNN in case proposition smooth switching 
algorithm is applied, respectively. The number 
of the input vector was 14, which included 7 
control inputs and 7 system response outputs. 
From these simulation results, particularly in the 
output of the LVQNN, it was verified that the 
external inertial load was almost exactly 
recognized to the correct class and an accurate 
control performance was obtained without 
regard the greatly changing external 
environments. 
The simulation results, which the external 
environment is between class 2 and class 3 
(k=0.004), are shown in Fig.13. In this case, the 
proportional gain of output of neural network 
controller is 1000=nK . From Fig. 13, the 

class number calculated from the output of the 
LVQNN was between 2 and 3, which proved 
that the external environment was between 
k=0.1 and k=0.01. In Fig. 14, 15 and 16, 
simulations were conducted to compare the 
system response with respect to 3 different 
external environments (k=0.1, k=0.01 and 
k=0.04) with and without the proposed 
intelligent control algorithm using neural 
networks. As also, in these figures, the 
comparison between proposed controller and the 
conventional PID controller with respect to 
correctly of that environment. From the 
simulation results, it was found that the system 
response became worse according to decrease in 
the stiffness of external environment without 
auto-tuning adaptively control parameters of 
PID controller. On the contrary, the system 
response was almost the same in any case by 
using the newly proposed intelligent control 
algorithm. To compare with the conventional 
PID controller with respect to correctly of that 
environment, it was also verified that the 
proposed method was very effective in the 
accurate control of the PAM manipulator.  
 
4. CONCLUSION 
 
In this study, the newly proposed intelligent 
control algorithm using neural network are 
given.  It is strongly recommended that the 
proposed control algorithm is very effective in 
both handling the high nonlinearity, hysteresis 
and without regard the greatly changing external 
environments.  
The newly intelligent controller presented can 
making online control with better dynamic 
property, strong robustness and suitable for the 
control of various kinds of complex dynamic 
systems. 
A more essential factor is that the proposed 
controller is easy applied to both accurate 
position control and force-control of various 
plants, including linear and nonlinear process 
and without regard greatly changing external 
environments. 

Table 1 Optimal parameters of the PID 
controller 

 
 
 
 
 

Environments Kp Ki Kd 
1 100 10 5 
2 300 200 30 
3 1200 1000 200 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 16 Comparison of the simulation results 
with and without proposed intelligent controller 

with respect to environment between 2 and 3 
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Fig. 8 Comparison of 
the simulation results 

with and without neural 
network controller 
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Fig. 9 Simulation 
results of system 

response with variation 
external environments 
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Fig. 10 Simulation 
results with respect to 

external environment 1 

Fig. 11 Simulation 
results with respect to 

external environment 2
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Fig. 12 Simulation 
results with respect 

to external 
environment 3 

Fig. 13 Simulation 
results with respect to 
external environment 

between 2 and 3 
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Fig. 14 Comparison of 
the simulation results 

with and without 
proposed intelligent 

controller with respect 
to environment 2 

Fig. 15 Comparison of 
the simulation results 

with and without 
proposed intelligent 

controller with respect 
to environment 3
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