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ABSTRACT 
 

In this research, we address the evolution of matrix cracking in viscoelastic cross-ply laminates made 
of long Carbon Fibre Reinforced Polymer (CFRP). Monotonic tensile tests performed on [03,903]s 
laminates at 120°C have shown a significant influence of loading rate on cracking development. 
Several numerical simulations meant to display the effect of possible factors are proposed in turn. 
First, linear viscoelastic shear-lag approaches using failure criteria are developed to describe cracking 
evolution as a function of load level, assuming a constant loading rate. Then, a simplified Schapery 1-
D model is used to characterize the nonlinear viscoelastic ply behaviour. The Correspondence 
Principle is applied to compute the time-dependent cracking development. This work shows that the 
viscoelastic behaviour of undamaged material cannot explain alone the loading rate effect on cracking. 
On the other hand, the loading rate dependence of critical strength gives good predicted cracking 
curves, which means that the important rate effect pertains to the damaged viscoelastic material in the 
process zone close to crack tips. 
 
 
1. INTRODUCTION 

 
Weight saving and high lifetime demands 

in aeronautic applications require using CFRP 
composite laminates in several aircraft 
structural parts. During a supersonic flight of 
Concorde’s successor travelling at a speed of 
Mach 2, the surface temperature will range 
between 100°C and 130°C, depending on the 
considered area. Under such an environment 
with high temperatures and mechanical loads, 
the composites display several failure modes, 
such as matrix cracking, fibre breakage and 
delamination. In order to guarantee the 
structural integrity, transverse matrix cracking 
must be assessed and monitored as it often 
precedes other damage events.  

The recent literature contains some 
experimental and analytical studies of the 

influence of viscoelastic behaviour on matrix 
cracking. Time dependent matrix cracking in 
transverse plies of cross-ply carbon/epoxy 
laminates was experimentally investigated by 
K.Ogi and Y.Takao [1] and Raghavan and 
Meshii [2]. Under quasi static loading, it is 
observed that the matrix transverse cracking 
growth rate depends upon the loading rate at a 
high temperature of 110°C [1], or even at room 
temperature [2]. To the knowledge of the 
authors, up to now there are very few analytical 
(linear or nonlinear) viscoelastic models using 
the fracture mechanics approach to predict 
crack density as a function of time and applied 
stress level. A probabilistic failure model has 
been proposed in [1] giving a good agreement 
between experimental results and predictions 
under monotonic loading. However, it provides 
little physical understanding, though the 



cracking behaviour can be phenomenologically 
described.    

The matrix cracking evolution under 
monotonic loading in viscoelastic cross-ply 
laminates is addressed in this research. The 
objectives are to model the crack development 
and to assess the respective contributions of 
different potential causes that might explain the 
effect of loading rate on damage process. First, 
several failure criteria are used in a 1-D linear 
viscoelastic shear-lag approach to predict 
cracking evolution. Next, a 2-D linear 
viscoelastic damage analysis is developed. 
Then, a simplified 1-D non linear analysis is 
proposed. The numerical simulation results 
obtained from the above approaches are finally 
compared with experimental data concerning 
crack density observed during uniaxial tensile 
tests on o o

n m S
0 90⎡⎣ ⎤⎦  laminates. 

 
2. EXPERIMENTAL RESULTS 
 

A carbon/epoxy composite laminate of 
the type IM7/977-2 with o o

n m S
0 90⎡⎣ ⎤⎦  stacking 

sequence, which has a nominal ply thickness of 
0.125 mm, has been studied. The coupons, 140 
mm long and 20 mm wide, were designed and 
provided by CCR-EADS (Corporate Research 
Centre, France, of the European Aeronautic 

Defence and Space Company). This material is 
made up of long carbon fibres possessing a high 

modulus of elasticity and of a two-phase 
toughened epoxy resin. The thermo-elastic 
properties of the unidirectional ply 
experimentally obtained at 120°C are given in 
Table 1. 
 

Fig. 1. Effect of loading rate on matrix cracking evolution during monotonic tensile tests at 120°C
 

Table 1. Elastic properties and coefficients of 
thermal expansion (CTE) of the unidirectional 
ply at 120°C 

 

Property  Value 

Longitudinal modulus  E11 148 (GPa) 
Transverse modulus E22 7.12 (GPa) 
In-plane Poisson’s ratio ν12 0.326 
In-plane shear modulus G12 3.3 (GPa) 
Longitudinal  CTE  α1 0.23 (10-6 °C)
Transverse  CTE  α2 30 (10-6 °C) 

Monotonic uniaxial tensile tests were 
conducted on the cross-ply laminates at a 
temperature of 120°C to measure transverse 
matrix crack density as a function of applied 
load [3]. Three different loading rates, 
producing three respective crosshead velocities 
(0.01 mm/min; 1 mm/min and 10 mm/min), 
were imposed. The experimental results are 
presented in Fig.1. At this temperature, loading 



rate has a significant influence on cracking. 
First, it can be seen that the occurrence of the 

first cracks is delayed when the loading rate 
increases. Namely, the higher the stress rate, the 
higher is the first ply failure stress. It is also 
observed that the higher the loading rate the 
greater the tensile strength. Moreover, the crack 
density increases more rapidly as a function of 
applied stress level if the loading rate decreases. 
 
3. NUMERICAL SIMULATION OF 

LOADING RATE EFFECT ON 
CRACKING 

 
Here, we consider cross-ply composite 

laminates of the type o o
n m S

0 90⎡⎣ ⎤⎦  as shown in 

Fig.2, possessing one 90° layer of thickness 2h1 
(denoted by superscript (1)) and two outer 0° 
layers of thickness h2 (denoted by superscript 
(2)). The x, y, z directions are the loading 
direction, the width direction and the thickness 
direction, respectively. The laminate is 
subjected to a monotonic tensile loading of 
form ( )tσ = σ×& t , where σ  is the external 
applied stress in the x direction, σ&  is the 
constant loading rate and t denotes the time. 
 
3.1. One dimensional linear analysis  
 

In this section, the one dimensional 
viscoelastic response of the laminate will be 
considered.  We also take into account residual 
thermal stresses (at 120°C) in this analysis. 
First, we find the stress and strain responses of 

the undamaged laminate in the case when there 
is no transverse matrix crack. The outer 0° 

layers and the inner 90° layer are supposed to 
display elastic and viscoelastic behaviours in 
the x-direction, respectively. Let 

( ) ( ) ( ) ( )
t

0

df t g t f t g d
d−

⊗ = − τ τ
τ∫ τ  denote the 

Stieltjes convolution of time functions ( )f t  and 

( )g t ; the constitutive and equilibrium 
equations of the undamaged laminate can be 
written in the form: 
 
      ( ) (2)

x0 1 11 x0t T Jε − α ∆ = σ% % ( )t  (1) 
 
 ( )1

x0 2 22 x0(t) T J (t) (t)ε − α ∆ = ⊗σ% %  (2) 
 
 ( ) ( ) ( )1 2

12 x0 x0 12h (t) (t) 1 h (t)σ + σ = + σ% %  (3) 
 
where 11 11J 1/ E=  and ; a 
superimposed tilde denotes the through 
thickness average of a particular variable; 

12 1 2h h / h=

( )x0 tε%  is the average x-direction laminate 

strain; is the average stress in layer i 
(i=1,2); 

(i)
x0 (t)σ%

aT T T0∆ = −  is the difference between 
specimen temperature, Ta (120°C), and  the 
stress-free temperature, T0 (180°C); ( )22J t  is 
the creep function of the material such that 

22 22E (t) J (t) H(t)⊗ = , H(t) being the Heaviside 
step function. The equation system can be 
solved by using the Laplace transform. For this 

Fig. 2. Laminate and crack g
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purpose, the tensile compliance in the 
transverse direction ( )22J t is represented in the 

form: ( n

3
t

22 20 2n
n 1

J (t) J J 1 e− τ

=

= + −∑ ) , where 

is a constant and  is the retardation time 
related to the amplitude  . The identification 
of these material constants obtained from 
creep/recovery tests on [90°] specimens is 
presented in Table 2. 

20J  

nτ

2nJ

 
Table 2. Parameters of transverse direction 
compliance at 120°C 

 
If the tensile applied stress becomes high 

enough, the 90° plies can crack. The 
experimental observations show that the matrix 
crack distribution in the central 90° layer tends 
to become periodic when the applied load 

increases. As a result, the damaged laminate is 
divided into several unit-cells comprised 

between two existing adjacent cracks assuming 
a 2L uniform spacing. Due to the symmetry of 
the cracked laminate, only a half of the unit-cell 
is considered (Fig.2). The appropriate boundary 
conditions are given by  

( ) ( )1 2U x 0 U x 0 0= = = =  and 
( ) ( )1
x x L 0σ = =% , where U1 and U2 are 

respectively the x-direction displacements of 
the 90° and 0° layers. Taking into account the 
viscoelastic behaviour of the central layer in the 
x-direction and the residual thermal strains, the 
constitutive equations of the layers and the 
interface can be written in the form: 

Fig. 3. Measured and predicted cracking evolution at 120°C for three loading rates. Comparison
between simulated curves obtained from critical strain criterion (εc = 0.0058; kε = 0.001; n = 0.23),
critical stress criterion (σc = 50 MPa; kσ = 11MPa; m = 0.2), and free energy criterion (ϕc = 0.1975
MNm/m3; kϕ = 0.065 MNm/m3; p = 0.25) 
 
 

Term Coefficient (Pa2nJ -1) Retardation time 
nτ  (min.) 

0 1.335 × 10-10  
1 2.500 × 10-12 20 
2 1.555 × 10-12 500 
3 8.034 × 10-12 5000 

 
 ( )1 (1)

x 22 x 2(x, t) E (t) (x, t) T⎡ ⎤σ = ⊗ ε −α ∆⎣ ⎦%%  (4) 

 

 ( ) ( )(2) (2)
x 11 x 1x, t E x, t T⎡ ⎤σ = ε −α ∆⎣ ⎦%%  (5)

 
where ( ) ( ) ( )22 23G t E t 2 1⎡ ⎤= − ν⎣ ⎦  is the shear 
relaxation function of the 90° layer and 



( )xz 1x,z h , t∗γ = γ =  is the shear strain due to 
the shear stress at the interface 

( )xz 1x,z h , t∗τ = τ = . Now, using the 
equilibrium equations of the layers and of the 
entire laminate, taking into account the 
boundary conditions at x=0 and x=L, results in 
the time evolutions of the maximum average 
normal stress and the maximum average strain 
between two adjacent cracks in the following 
form: 
 

 ( ) ( ) ( ) ( )
1(1)

x x0
1D

10, t t 1
cosh L

⎡ ⎤
σ = σ × −⎢ ⎥

α ×⎢ ⎥⎣ ⎦
% %  

  (7) 
 

 ( ) ( ) ( )
( ) ( )
( )

(1)
22 x01

x x0
1D

J t t
0, t t

cosh L

⎡ ⎤⊗σ⎣ ⎦ε = ε −
α ×

%
% %   

  (8) 
 

where 
( )1D 2

231

3 1
2 1h

α = ×
+ ν

, taking into 

account the fact that 22

11

E 1
E

 for the material at 

hand. Several failure criteria will be used in 
turn (critical stress, critical strain and Reiner-
Weissenberg criterion [4]) to predict the crack 
multiplication as a function of applied load 
level, assuming a constant loading rate. The 
first criterion states that a new crack appears in 
the matrix of the central lamina when the 
maximum strain attains some critical value 
depending on the loading rate, that is, 
( ) ( ) ( )n1
x c0, t kεε = ε + σ σ& &% r , where , cε kε , n are 

material constants and rσ&  is a reference stress 
rate. The second criterion is analogous to the 
first, but it involves the maximum normal stress 
between two existing cracks, namely 

( ) ( ) ( )m1
x c0, t kσσ = σ + σ σ& &% r , where , cσ kσ  and 

m are material constants. The last criterion 
postulates that a new crack forms if the free 
energy in the central layer attains a critical 
value depending on the loading rate. The 
maximum value of the free energy, attained 
halfway between two adjacent cracks of 
spacing 2L, is given by: 
 

( ) ( )

( ) ( ) ( ) ( )n

2

1D

2t u32 t1 12n
20 x0 x02 0nn 1

1 10, t 1
2 cosh L

J
J t e u du

+

−
−

τ

=

⎧ ⎫⎪ ⎪ϕ = − ×⎨ ⎬
α ×⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤ ⎢ ⎥σ + σ⎨ ⎬⎢ ⎥⎣ ⎦ ⎢ ⎥τ⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∫% %

 

  (9) 
 
and the corresponding criterion is 

( ) ( )p
c0, t kϕ rϕ = ϕ + σ σ& & , where , cϕ kϕ  et p 

are material constants.  
Fig.3 presents the resulting numerical 

simulations of the evolution of the crack density 

defined by 1
2L

ρ = . The predicted curves are 

obtained by using the above failure criteria for 
three values of the loading rate at 120°C. It can 
be seen that the above criteria give practically 
the same numerical results and that they allow 
the experimental data to be well represented 
only if the critical values depend on the loading 
rate, which amounts to involve the viscoelastic 
character of the failing material in the process 
zone around crack tips. 
 
3.2. Two dimensional linear analysis  
 

The one dimensional analysis does not 
take into account the viscoelastic character of 
the outer layers in the y-direction. We now 
study the impact of this simplification. Using an 
approach similar to that developed in the 
unidirectional analysis, we first find the 
response of the undamaged laminate, then that 
of the cracked central layer. Using the two 
dimensional viscoelastic constitutive equations 
of the layers, and taking into account the 
laminate symmetry and the boundary 
conditions, the x-direction maximum stress and 
strain between two existing adjacent cracks are 
obtained in the form: 
 

 ( ) ( ) ( ) ( )
1(1)

x x0
2D

10, t t 1
cosh L

⎡ ⎤
σ = σ × −⎢ ⎥

α ×⎢ ⎥⎣ ⎦
% %  

  (10) 
 
 



( ) ( ) ( )
( ) ( ) ( )

( )

2
(1) (1)12

22 x0 x0
111

x x0
2D

JJ t t t
J

0, t t
cosh L

⎡ ⎤
⊗σ − σ⎢ ⎥

⎢ ⎥⎣ ⎦ε = ε −
α ×

% %

% %  

  (11) 
 

where 
( ) ( )2D 2

23 22 12 121

3 1
2 1 E / G hh

α = ×
+ ν +

; 

( ) ( )1
x0 tσ% and ( )x0 tε%  are, respectively, the stress 

in the 90° layer and the strain of the undamaged 
laminate subjected to the same loading. They 
can be found by solving the system of layer 
constitutive equations, taking into account the 
“viscoelastic Poisson effect”, given in matrix 
form as [1]:  
 

( )
( )

( ) ( ) ( )
( ) ( )

1
x0x0 2 22 12
1

y0 1 12 11 y0

tt J t J
t J J t

⎧ ⎫σ⎧ ⎫ε − α ∆Τ ⎡ ⎤⎪ ⎪ ⎪= ⊗⎨ ⎬ ⎨⎢ ⎥ε − α ∆Τ σ⎪ ⎪ ⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭

%%

% %

( )
( ) ( )

( ) ( )
( ) ( )

2
x011 12x0 1
2

12 22y0 2 y0

tJ Jt
J J tt t

⎧ ⎫σ⎧ ⎫ε − α ∆Τ ⎡ ⎤⎪ ⎪ ⎪= ⊗⎨ ⎬ ⎨⎢ ⎥ε − α ∆Τ σ⎪ ⎪ ⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭

%%

% %

⎪
⎬

⎪
⎬  

 
where 12 12 11J = −ν E  ; the stresses in the layers 
must satisfy the averaged equilibrium equations 
of the laminate in the x-direction and y-
direction, namely 

( ) ( ) ( )1 2
12 x0 x0 12h (t) (t) 1 h (t)σ + σ = + σ% %  and 

( ) ( ) ( ) ( )1 2
12 y0 y0h t t 0σ + σ =% % . Now the same failure 

criteria can still be used to predict crack 
multiplication. Fig. 4 represents the zoomed-in 
simulation results obtained from a maximum 
strain failure criterion whose critical value is 
independent of the loading rate, namely 
( ) ( )1
x 0, t cε = ε% , where cε is a constant. In this 

case, for the three considered loading rates, the 
numerically predicted crack curves are very 
close from each other. This proves that, as was 
the case in the one-dimensional study, a 
criterion insensitive to the loading rate does not 
sufficiently convey the influence of the loading 
rate on cracking, even when taking into account 
the two-dimensional stress state. 

Fig. 4. Predicted cracking evolution at 120°C for three loading rates using a rate-independent 
critical strain criterion (εc = 0.0058) 

 
 

 
3.3. One dimensional non linear analysis  
 

The creep tests revealed that the material 
at hand displays a very marked non linear 
behaviour, which raises the question whether 
the non linearity can increase the influence of 
the loading rate on cracking. A simplified 1-D 
Schapery model will be used to characterize the 
non linear viscoelastic behaviour of the 90° 
layer [5, 6]. 

Supposing that the non linear behaviour 
of material in the central layer is described by 
only one stress-dependent function  [6], we 2g



Fig. 5. Crack density (cm-1) versus applied stress (MPa) at 120°C for three loading rates.
Comparison between experiment and 1-D linear and nonlinear simulations using a rate-dependent
critical strain criterion 
 

obtain: ( ) ( )1
x x, tε% =  

( ) ( ) ( ) ( )
1

1
22 2 ef x

2h
J t g x,z, t⊗ σ σ , where the 

symbol 
12h  denotes the average of a 

particular function over the thickness of the 
central layer, and the effective stress [7] is 

defined by: , 

with k

( ) ( ) ( ) 1/ 21 12 2
ef x ef xzx,z, t k⎡σ = σ + τ⎣

⎤
⎦

ef = 3.03 [8]. The nonlinearizing function 
 can be represented in the form 2g

( ) gb
2g 1 aσ = + σg , with ag=0.14 and bg=2, 

obtained from creep-recovery tests on [90°] 
specimens at several stress levels. A possible 
identification procedure is described in [9]. In 
order to apply the nonlinear correspondence 
principle [10], the constitutive equations of the 
layers must be written in the form: 
 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

1
x 20 2 ef x

2h

1 R
x

x, t D t J g x, t

D t x, t

ε = ⊗ σ σ

= ⊗ε

%

%

1

  

  (12) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
x x 11 x

11

2 R
x

1x, t x, t D t J x, t
E

D t x, t

ε = σ ≈ ⊗ σ

= ⊗ε

% % %

%

 

  (13) 
   
where ( ) ( )22 20D t J t J=  and the superscript 
“R” denotes the solution of a reference 
nonlinear elastic problem corresponding to the 
nonlinear viscoelastic problem with the same 
traction boundary conditions. The viscoelastic 
and elastic stresses are the same, namely 

( ) ( ) ( ) (i i R
x xx, t x, tσ = σ% % )  and ( ) ( )Rx, t x, t∗ ∗τ = τ . 

Taking into account the fact that 

( ) ( )2 ef 2 efg g∗ ∗ ∗ ∗τ σ ≈ τ τ k  and 

( ) ( ) ( ) ( )
1

1 1 (1)
x 2 ef x 2 x

2h
g gσ σ ≈ σ σ% % for the material 

system at hand, the following relationship 
between stresses can be arrived at:   
 



( ) ( )
( ) ( )

R

R R1
23 2 efR

1 R(2)R (1)R11
x x 2 x

20

1
2hx 1 g k

3

J
g

J

∗

∗ ∗
∗

∂τ
−

∂ ∂ ⎡ + ν τ τ⎢∂τ ⎣
⎧ ⎫⎪ ⎪× σ −σ σ =⎨
⎪⎩

% % % 0

⎤
⎥⎦

⎬
⎪⎭

  

  (14) 
 
Combining this with the two following 
equilibrium equations of the 0° and 90° layers:  
 

 
(1)R R
x

1
0

x h

∗∂σ τ
+ =

∂
%

  (15) 

 

 
(2)R R
x

2
0

x h

∗∂σ τ
− =

∂
%

 (16) 

 
one now obtains a system of nonlinear 
differential Eqs. (14), (15) and (16), with 
boundary conditions: 
 
 ( ) ( )1 R

x x L 0σ = =%   

 ( ) ( ) ( ) ( )2 R
x 1x L 1 h tσ = = + σ% 2  

 ( )R x 0 0∗τ = =   (17) 
 
The unknowns in the above system are the “R” 
elastic stresses. A numerical program using the 
shooting method [11] was developed to solve it. 
Then the maximum viscoelastic strain between 
two adjacent cracks in the central lamina is 
found by using Eq. (12). Finally, a critical strain 
failure criterion is used to model the transverse 
cracking evolution. A good agreement between 
the simulated curves and experiments could 
only be achieved by again introducing the 
loading rate into the critical values. In Fig. 5, 
the simulation of crack density curves predicted 
from 1-D linear and nonlinear analyses, using a 
rate-dependent critical strain criterion in the 
central 90° layer, is represented. 
 
4. DISCUSSION AND CONCLUSIONS 
 

The monotonic tensile tests performed on 
the carbon/epoxy o o

n m S
0 90⎡⎣ ⎤⎦  at 120°C, with 

the three respective crosshead velocities (0.01 
mm/min, 1 mm/min and 10 mm/min), have 
displayed a marked loading rate dependence for 
the transverse matrix cracking evolution. 

Several phenomena might explain this effect: 
the viscoelastic behaviour of the undamaged 
material in the 90° plies and that of the 
damaged material surrounding the crack tip 
vicinities.  

The aim of this paper is to assess the 
respective contributions of the different 
potential causes. For such a purpose, several 
numerical viscoelastic simulations were 
proposed in turn.  

 First, a 1-D linear viscoelastic shear-lag 
approach, which takes into account thermal 
stresses, was analyzed. Several failure criteria 
(critical stress, critical strain and Reiner-
Weissenberg free energy density), used to 
describe cracking evolution as a function of 
load level assuming a constant loading rate, 
give very close numerical results. The failure 
criteria can properly display the loading rate 
effect only if the stress rate is incorporated.  

Next, a 2-D linear viscoelastic analysis 
was developed. The numerically predicted 
crack density curves show that, even if the 2-D 
stress state is taken into account, the 
viscoelastic character of the undamaged 
material is not marked enough to explain alone 
the influence of the loading rate on cracking 
curves. The improvement brought about by the 
incorporation of thermal stresses is not 
significant at the considered temperature.  

The simplified 1-D Schapery model was 
proposed to characterize the nonlinear 
viscoelastic ply behaviour by using data 
obtained from creep-recovery tests. A 
maximum strain failure criterion is used to 
numerically model the time-dependent cracking 
evolution. The comparison of 1-D linear and 
nonlinear numerical results shows that, though 
important, the material nonlinearity does not 
significantly enhance the stress rate sensitivity 
of the damaging process. 

This work shows that the viscoelastic 
behaviour of the undamaged material cannot 
alone explain the marked effect of the loading 
rate on transverse cracking. On the other hand, 
if the loading rate dependence of critical 
strength is taken into account, good predicted 
cracking curves are obtained, which means that 
the observed important rate effect is attributable 
to the damaged viscoelastic material in the 
process zone close to crack tips. The precise 
causes of this loading rate influence remain to 
be cleared up; cracking tests conducted in a 



neutral environment will be the next logical 
step of this research in order to evaluate a 
possible oxidative effect.  

The time-dependent crack density 
evolution in a viscoelastic laminate subjected to 
monotonic tensile loading was also modelled. 
As shown in Fig. 3 and Fig. 5, the predicted 
cracking curves, for each loading rate, are in 
good agreement with experiment except for the 
very early phase of the phenomenon. A 
probabilistic failure criterion can be attempted 
in order to better reproduce the S-form of the 
cracking curves by properly describing the very 
low crack density range. 
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