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ABSTRACT 
 

  Non-linear dynamical systems are difficult to control due to the model uncertainties and external 
disturbances that may occur in these systems. This paper addresses the problem of modeling and on-
line direct inverse controlling method using neural networks for a given class of nonlinear systems. 
The design procedure involves the integration of identification and neural control for an imprecisely 
known plant. A new recurrent neural network approach for on-line adaptive control is presented. A 
dynamic learning algorithm for the recurrent neutral network has been developed with faster 
convergence and improved steady-state performance for two neural networks structure. On-line 
simulation studies for selected process with the proposed control are presented and discussed using 
two-link robot arm to demonstrate the performance of the proposed strategy. 
 
1.  INTRODUCTION  
         
  There are several ways to cope with 
nonlinear control design for plants subject to 
uncertainty and disturbances; among them are 
robust and adaptive control methods. While 
neural adaptive control is being intensively 
developed [1], [3], [4], so as the applications of 
neural networks to nonlinear control. For 
example, Narendra et al. [2], [7] introduced 
multilayer neural networks for identification 
and adaptive control of nonlinear systems. A 
number of studies such as [6], [10] for adaptive 
control of unknown feedback linearizable 
system for achieving guaranteed performance 
of the neural network has excellent capabilities 
of nonlinear mapping, learning ability, and 
parallel computations [5], [12].  
       In this paper, a general framework for 
neural controller design is introduced using a 
new method for cost function implementation, 
to derive a learning scheme for the neural-
based modeling and controlling networks. The 
control of a system with unknown dynamical 
and partially know states is accomplished 
using dynamical neural networks. Novel 
updating algorithm is developed. On-line 
tracking performance and robustness 

properties are proven with performance 
verified through simulation examples.  
 
 
2. PROBLEM FORMULATION  

 
2.1 Notation 

 Definition 1: 
Ordered derivative: v∂∂ /(.)*  a special 
notation is used to distinguish between two 
forms of partial derivative [9], [11]. For any 
variable v, v/* ∂∂  account for the direct and 
indirect effects on the interaction between the 
other variables.  
Assumptions 1 
Given a positive constant 0ε and a continuous 
function RCf →: , where rmRC ⊂ is a 
compact set, there exists a weight matrix 

*WW = and a positive integer *n such that 
the output ),(ˆ Wxf of the MLP recurrent neural 
network with *n nodes satisfies  

0)(*),(ˆmax ε≤−
∈

xfWuf
Cx

 

where u: the inputs and *n may depend on 
precision parameter 0ε and the function f  
 



Assumptions 2 
The output ),(ˆ Wuf of the MLP recurrent 

neural network is continuous with respect to its 
arguments for all finite ),( Wu  

 
2.2 Objectives 

 
The control objective: given a desired 

output )(tyd , find a control u such the output 
of the system tracks the desired trajectory with 
an acceptable accuracy, while all the states and 
control remain bounded. 

 In this paper, we investigate on the 
formulation of a new type of cost function, to 
derive the training rules for the neural-based 
modeling (Fig. 2.1) and neural-based controller 
(Fig. 2.2) using the identification error, defined 
by yyeI ˆ−= , and the tracking error 

dyeC −=    
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Proposition 1:   

In a reference neural control scheme using 
recurrent multi-layer perceptron (MLP), 
satisfied the Assumption 1 and 2, then the 
information from control environment can be 
introduced to the neural networks training 
process by formulating the cost function with 
two terms: 

 
21 JJJ +=  

)(1 eJJ = : error cost function 
),(2 WuJJ = : tuning function, related to 

the conditions of control environment and the 
weight regulation 

 
Proof:  
Consider the system controlled with the 
desired control behavior is specified by a cost 
function J over the interval ],0[ T : 

∫=
T

C dtTttrtutytxlJ
0

),),(),(),(),((  in which 

)(tx : the state vector, )(ty : output vector, 
)(tu : input vector, :)(tr a reference vector. 

Discretize the system dynamics, and then we 

have ∑
=

=
N

k
NkkrkykxlJ

0
),),(),(),(( . Using the 

definition of ordered derivative, then: 
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The equations above shows the direct and 

indirect effects on the interaction between the 
other variables, and suggest that we should 
formulate: 

 The cost function 21 JJJ +=           (P.3)    
 

In which: ∑
=
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N

k
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and when using the ordered derivative notion 
for J in (P.3), the proposition 1 is proven    
     �                                     
Assumption 3:  

The weights sub-optimal value lc
jw  which 

is assumed to be stuck in to local minima, can 
be defined from the statistical methods [10] 
 



Lemma 1:  
The neural-based identification 

networks, using Figure 2.1, satisfied the 
proposition 1 and under the assumptions A1-
A4., the weights are adjusted as follow: 
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With a proper choice of: learning rate 
Mµµ <  and weight regulating term Mηη < , 

then the identification error converges and has 
local minima-free. 
 
Proof: 
Derivation of the training rule: from Fig. 2.1, 
then:  
 

),k(y),nk(x),...,k(x),k(x(f)k(y 11 −−−=  
     )W),mk(y..., −                      (L1.1) 
 )(kx : input vector, )(ky : output vector , W : 
the weights of the identification network  
 
With 
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Using gradient descent method, then 
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After some arrangements, then:                
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Finally  
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       In which, the gradient vector )(kYW∇  and 

)(kYX∇  are: 
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Convergence and the proper choice of µ  
Chose the Lyapunov function as  
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The error in the MLP neural networks is:   
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  In which: 
 )(kiδ : Equivalent sensitivity of the output 
with respect to weight; )(kX i : inputs and 

))(( ksf i′ : derivative of output activation soft 
function    
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Local minima-free and the choice of Mλ<λ  
Chose the weight regulation function as 
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Assume that 0>η and is a quite large number, 
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Assumption 4:  

The control inputs u of the MLP recurrent 
neural network are bounded and be continuous 
with respect to its arguments for all finite 

),( Wu  
Lemma 2: 

The neural-based controller, using Figure 
2.2, satisfied the proposition 1, under the 
assumptions A1-A4., the weights are adjusted 
as follow: 
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)u(JJ 22 = : The tuning function, related 
to the conditions of control environment, Q: 
weighting factor case of MIMO system.   

With the proper choice of control 
parameter, then the tracking error converges 
Proof: 
Derivation of the training rule 
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From Fig. 2.1,  
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Define the input, output vectors U(k), Y(k):    
 The gradient vectors )(kUW∇ , )(kYU∇ , 

)(kYY∇  and )(kYW∇ , then 
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Tracking convergence:  ∫ <t
eC Mde0

2)( ττ
      
Chose P , Q, Λ : satisfied the Lyapunov 
function [8]: 
 

QPPT −=+ ΛΛ     Define   ω+Λ= ee   



)emin( I=ω = Minimum identification error  
 
 Chose the Lyapunov function candidate 
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The tracking converge when 0>V  and 0<V  
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minQλ :  The minimum eigenvalue of Q 
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With A, B, positive, and the identification is 
matching, ⇒ ∞<≤∫ e

t Mde ττ0
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3. CONTROL SCHEME 
 

We propose a general scheme of neural 
reference model control systems consist neural 

model and neural controller as show in Fig. 
3.1. The neural training process uses two 
updating laws from lemma 1, and lemma 2. 
The overall scheme also include a disturbance 
canceller consist of a disturbance detector and 
disturbance rejector. The first component 
detects the mismatching error due to the 
system disturbances. Then, the disturbance 
rejector is a neural-based controller to produce 
a supplement control signal to compensate the 
control action by performing disturbance 
cancellation in plant control. 
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4. SIMULATION RESULTS 
 

A planar two-link arm using DC electric 
drive is used for illustration purpose appears in 
fig 4.1, the dynamic are given in Lewis et al. 
[4], [11]. Here we select l1=1m, l2=1m, 
m1=0,8kg, m2=2,3kg and g0=9,8m/s2, no 
friction term was used in this examples. We 
would like to illustrate the neural network 
tracking control scheme derived herein which 
will require no knowledge of the dynamics, 
nor even their structure, which is needed for 
adaptive control. The controlled system was 
tested by simulated experiments and the 
response of the controlled system to a tracking 
control is illustrated in Figure a, b. The control 
system was also tested for disturbances in the 
case of change in load and/or parameter 
variations. This is shown in Figure 4.2 with q1, 
q2 are outputs trajectory and qd1, qd2 are the 
references trajectory, respectively. 
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  Figure 4.2.a: q1 when m2=m2nom 
 
   

 
 Figure 4.2.b:  q2 when m2=m2nom 
 
 

 
Figure 4.2.c:  q1 when m2=1.5m2nom 
Disturbance appears 
 
 

 
Figure 4.2.d:  q2 when m2=1.5m2nom 
Disturbance appears 
 

 
Figure 4.2.e:  q1 when m2=1.5m2nom 
Disturbance canceller in action 
 

 
 Figure 4.2.f:  q2 when m2=1.5m2nom 
Disturbance canceller in action 

 

 
Figure 4.2.g:   q1 when m2=0.5m2nom 
Disturbance appears    

 

 
Figure 4.2.h:   q2 when m2=0.5m2nom 
Disturbance appears    
 



    
Figure 4.2.i:   q1 when m2=0.5m2nom 
Disturbance canceller in action  
 

  
Figure 4.2.j:   q2 when m2=0.5m2nom 
Disturbance canceller in action  
 
 
5. CONCLUSION 

 
In this paper a control algorithm and 

control scheme for dynamical nonlinear 
systems has been presented. It was 
demonstrated that the control algorithm can 
control a two-link robot arm. The response to 
disturbance was also demonstrated. The 
proposed method do not require the robot 
dynamics to be exactly know in the system, 
hence the same neural network controller can 
be applied to many type of robot or a class of 
nonlinear systems without modification. 
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